期刊文献+

范例库上的知识发现 被引量:9

KNOWLEDGE DISCOVERY IN CASE BASE
下载PDF
导出
摘要 本文着重探讨在范例库中引入一系列可以使用的知识发现技术 ,以提高范例推理系统的知识获取的自动化程度 ,这里提出了基于范例库上的修正规则的发现技术与算法 ,为此进行了实验与讨论 . In case based system, there are many kinds of knowledge, such as case base, adaptation knowledge base, indexing model, similarity assessing criteria, etc. This paper discusses emphatically data mining techniques which could be used in CBR and automate the acquisition of the knowledge. The paper puts forward algorithms of adaptation knowledge acquisition from casebase automatically. The experimental result shows that these methods have strengthened the performance of the system.$$$$
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第4期45-49,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家自然科学基金 ( 60 0 75 0 1 5 ) 国家"863"计划资助
关键词 范例推理 知识发现 范例库 修正知识库 知识获取 修正规则 规则推理 case-based reasoning knowledge discovery case base adaptation knoledge base
  • 相关文献

参考文献13

  • 1Mario Lenz. Case-based Reasoning: From Foundations to Applications [M]. Berlin: Springer, 1998 被引量:1
  • 2Jagielska I, Matthews C, Whitfort T. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J]. Neurocomputing,1999, 24:37~54 被引量:1
  • 3David Leake. Learning to integrate multiple knowledge sources for case-based reasoning [J]. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, Morgan Kaufmann san Fransisco,1997, 246~251 被引量:1
  • 4Hiroshi Tsukimoto. Extracting rules from neural networks [J]. IEEE Transactions on Neural Networks, 2000,11(2) :377~389 被引量:1
  • 5Mejia-Lavalle M, Rodriguez-Ortiz G. Obtaining expert system rules using data mining tools from a power generation database[J]. Expert systems with applications, 1998, 14:37~42 被引量:1
  • 6Kraslawski A, Pedrycz W, L Nystrom. Fuzzy neural network as instance generator for case-based reasoning system[J]. Neural Computing & Applications, 1999, 8:106~113 被引量:1
  • 7Hanney K, Keane M. Learning adaptation rules from a case base [J]. Ian smith, Boi Faltings eds Proceedings of the Third European Workshop on Case-based Reasoning, Lausanne, New York :Springer, 1996, 178~ 192 被引量:1
  • 8Rudolph Stephan. Knowledge discovery in scientific data [J]. Proceedings of the International Society for Optical Engineering, 2000,250~258 被引量:1
  • 9Skalak D. Prototype and features selection by sampling and random mutation hill-climbing algorithm[J], in Proc.11th Int. Machine Learning Conf, Morgan Koufanann, 1994, 293~301 被引量:1
  • 10Azuaje F. Discovering relevance knowledge in data :a growing cell structure approach [J]. IEEE Transactions on systems, man, and cybernetics, 2000,30(3): 被引量:1

同被引文献35

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部