期刊文献+

基于神经网络和D-S证据的电厂凝汽器故障诊断研究 被引量:6

Research of Fault Diagnosis Based on Neural Networks and D-S Evidence for Condenser in Power Plant
原文传递
导出
摘要 火电厂凝汽器是汽轮发电机组的重要辅机之一,其工作状况对整个电厂安全和经济运行都有着决定性的影响。结合信息融合思想,提出一种基于神经网络和D-S证据理论的电厂凝汽器故障综合诊断方法,首先通过BP神经网络和CPN神经网络得到各自的诊断结果作为决策层D-S证据理论的初始证据,再利用证据理论对这些结果进行融合,得到最终的故障诊断结果。通过实例数据诊断结果表明:与单一神经网络诊断结果相比,该方法减少了误差,提高了诊断可信度。 Condenser is one of the most important auxiliaries of turbine generator unit in power plant,whose operating condition decisively affects the safe and economically operation of the whole plant. Combination the thought of information fusion,the method of condenser integrated fault diagnosis based on neural networks and D-S evidence theory is proposed. The respective diagnosis results regarded as the D-S evidence theory primary evidences in decision layer according to BP neural network and CPN network are obtained first,and then these results are fused by using of the D-S evidence theory to obtain the final diagnosis result. The diagnosis results show that this method has a smaller error and higher diagnosis reliability comparing with the results from the single neural network.
出处 《华东电力》 北大核心 2014年第6期1227-1232,共6页 East China Electric Power
基金 上海市教育委员会科研创新重点项目(12ZZ177) 上海市电站自动化技术重点实验室开放课题(13DZ2273800)~~
关键词 信息融合 神经网络 D-S证据理论 故障诊断 凝汽器 Information fusion Neural networks D-S evidence theory Fault diagnosis Condenser
  • 相关文献

参考文献5

二级参考文献24

共引文献17

同被引文献83

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部