期刊文献+

改进的对向传播网络及其在多传感器目标识别中的应用 被引量:4

Modified Counter Propagation Network and Its Application to Multi-Sensor Target Recognition
下载PDF
导出
摘要 针对多传感器数据融合和目标识别的特点 ,提出了改进的对向传播网络 (MCPN) ,并与Dempster Shafer(D S)证据推理相结合 ,实现了决策层数据融合目标识别 .文中利用仿真数据对所提出的网络训练算法和融合结构进行了实验研究 .结果表明 :改进后的对向传播网络识别性能优于传统的对向传播网络 (CPN) ,融合后的目标识别率较单传感器明显提高 .最后 ,将该方法应用于前视红外 (FLIR)和可见光摄像机目标跟踪系统对算法和融合结构进行验证 ,结果表明文中提出的方法是可行的 . In view of the features of multi-sensor data fusion and target recognition, a modified counter propagation neural network (MCPN) is proposed. And incorporated with Dempster-Shafer (D-S) evidence reasoning, the data fusion at decision level is achieved for target recognition. The proposed algorithm for training network and the fusion architecture are studied using simulated data. The results show that the recognition performances of modified network outperform the general counter propagation network (CPN) and the correct recognition rate of the fusion system is significantly increased compared with single sensor. At the same time, the ability of system fault tolerance is improved and the uncertainty is decreased. Finally, to illustrate the effectiveness, MCPN algorithm and the fusion architecture for target recognition are applied to a target tracing system of FLIR and TV camera. The experimental results indicate that the approach in the paper is workable.
出处 《光子学报》 EI CAS CSCD 北大核心 2003年第2期244-248,共5页 Acta Photonica Sinica
基金 国防科工委基础预研 目标与环境光学特征国防科技重点实验室开放基金资助项目 (0 0JS6 6 .3.1.BQ .0 110 )
关键词 多传感器数据融合 目标识别 人工神经网络 D-S证据推理 Multi-sensor data fusion Target recognition Artificial neural networks D-S evidence reasoning
  • 相关文献

参考文献10

  • 1[1]Belur V D. Sensor Fusion 1996. Optical Engineering, 1996, 35(1): 601~602 被引量:1
  • 2[2]Lawrence A K. Sensor and data fusion concepts and applications. SPIE Optical Engineering Press, Bellingham, Washington, USA, 1998. 231~245 被引量:1
  • 3[3]Hecht-Nielsen R. Counterpropagation networks. Applied Optics, 1987, 26(12): 4979~4984 被引量:1
  • 4[4]Hecht-Nielsen R. Applications of counterpropagation networks. Neural Networks, 1988, 1(1): 131~139 被引量:1
  • 5[5]László K, Gábor T. Boundary region sensitive classification for the counter-propagation neural network. IEEE, 2000, 0-7695-0619-4/00: 90~94 被引量:1
  • 6[6]Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464~1480 被引量:1
  • 7[7]Thomopoulos, Dignet S C A. An unsupervised-learning clustering algorithm for clustering and data fusion. IEEE Transactions on AES, 1995, 31(1):21~38 被引量:1
  • 8[8]Thierry D. A neural network classifier based on dempster-shafer theory. IEEE Transactions on SMC, 2000, 30(2):131~150 被引量:1
  • 9[9]Fred S,Dan G. Ladar and Flir, based sensor fusion for automatic target classification. Proceedings of SPIE, 1988, 1003: 236~246 被引量:1
  • 10[10]Niu L H. Ni G Q. CPN based multi-sensor fusion for target classification. Proceedings of SPIE, 2002, 4875: 671~676 被引量:1

同被引文献25

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部