摘要
设 D1、 D2是互素的正整数,D_1,D_2,k 是适合 gcd(k,D_1,D_2) =1的正整数,本文运用 Baker方法讨论了方程 D_1x^2+D_2=λk^n 的正整数解(x,n)的个数,其中λ在2(?)k 或者2(?)k 时分别等于1或者4.
Let D_1,D_2,be coprime positive integers with D_1<D_2,and let k bea positive integer with gcd(k,D_1D_2) =1. In this paper,withthe application of the Baker method,we discuss the number of positive integer solutions(x,n)of the equation D_1x^2+D_2=λk^n,where λ=1 or 4 according as it is in 2(?)k or 2|k.
出处
《长沙铁道学院学报》
CSCD
1992年第4期96-101,共6页
Journal of Changsha Railway University
关键词
解数
丢番图方程
BAKER方法
diophantine equation,number of solutions,Baker's method