摘要
基于ABAQUS软件构建激光金属沉积(laser metal deposition,LMD)316L不锈钢增材制造的有限元模型,采用生死单元和双椭球移动热源结合的方式进行数值模拟,研究单道单层LMD过程中的温度场以及不同工艺参数对温度场、不同区域特征点温度梯度的影响。进一步探究了单道多层LMD过程中熔池的温度变化和各层之间的热循环规律。设计相关实验,验证数值模拟结果。结果表明:降低扫描速度或提高激光功率,熔池作用范围会变大。激光功率对温度梯度影响更大,尤其是纵向温度梯度。随着LMD层数的增加,且由于往复扫描的工艺路径,温度梯度显著增加,因此成形零件容易发生弯曲变形。单道多层薄壁件的整体形貌进一步说明了LMD温度梯度模拟的准确性。
A finite element model of laser metal deposition(LMD)316L stainless steel additive manufacturing was constructed based on ABAQUS software.Numerical simulations were carried out using a combination of birth-death cell and dual ellipsoidal moving heat source to study the temperature field in single-pass single-layer LMD process and the effects of different process parameters on the temperature field and the temperature gradient of the characteristic points in different regions.The temperature variation of the molten pool and the thermal cycling law between layers in the single-pass multilayer LMD process were further investigated.Relevant experiments were designed to verify the numerical simulation results.The results show that the action range of molten pool becomes larger by decreasing the scanning speed or increasing the laser power.The laser power has bigger influence on the temperature gradient,especially the longitudinal temperature gradient.With the increase of the number of LMD layers and due to the reciprocal scanning process path,the temperature gradient increases significantly,so the formed parts are prone to bending deformation.The overall morphology of single-pass multilayer thin-walled part further illustrates the accuracy of the LMD temperature gradient simulation.
作者
卢裕尔
孙文磊
钟荟玄
邹利
黎勇
张团
LU Yuer;SUN Wenlei;ZHONG Huixuan;ZOU Li;LI Yong;ZHANG Tuan(College of Intel ligent Manufacturing Modern Industry(School of Mechanical Engineering),Xinjiang University,Urumqi 830017,China)
出处
《热加工工艺》
北大核心
2024年第20期129-139,共11页
Hot Working Technology
基金
新疆维吾尔自治区重点实验室开放基金项目(2020520002)
机械装备关键零部件先进表面工程关键技术研发项目(2022B01036)。
关键词
激光金属沉积
数值模拟
温度场
温度梯度
laser metal deposition
numerical simulation
temperature field
temperature gradient