摘要
目的:基于CiteSpace软件探究中医药治疗经皮冠状动脉介入术(Percutaneous Coronary Intervention,PCI)患者的研究状况及热点趋势,为中医药治疗PCI患者的研究提供参考。方法:计算机检索中国知网2012年1月31日-2021年12月31日发表的所有中医药治疗PCI患者的相关文献,运用CiteSpace 6.1.R1软件对纳入文献的作者、机构、关键词进行可视化分析。结果:最终纳入文献683篇,涉及作者304位,发文机构243个。研究分析显示,未形成具有中心性的作者和机构。关键词分析发现,关键节点有冠状动脉粥样硬化性心脏病、心绞痛、心肌梗死等。研究热点主要从术后并发症、术后中医证型、中医治疗手段、治疗效果4个方面展开。关键词突现分析发现,炎症因子、心理健康和用药规律为当今研究前沿。结论:中医药治疗PCI患者热点集中于探索中医药对PCI患者炎症因子、心理健康的影响及用药规律,对中医外治法及动物实验研究数量较少,该领域的探索有待加强。
Objective:To explore the research status and hot trends of traditional Chinese medicine(TCM)in the treatment of percutaneous coronary intervention(PCI)patients based on CiteSpace software,and to provid reference for the study of TCM treatment of PCI patients.Methods:All literature related to TCM treatment of PCI patients published on CNKI from January 31,2012 to December 31,2021 were retrieved by computer.CiteSpace6.1.R1 software was used to visually analyze the authors,institutions and keywords of the included literature.Results:A total of 683 articles were included,involving 304 authors and 243 institutions.The analysis showed that no authors and institutions with centrality were formed.Keywords analysis showed that the key nodes were coronary heart disease,angina pectoris,restenosis,myocardial infarction,etc..The research hotspots were mainly carried out from four aspects:postoperative complications,postoperative TCM syndrome type,TCM treatment means and treatment effect.Key words emergent analysis found that inflammatory factors,mental health and medication patterns are the frontiers of today's research.Conclusion:The focus of TCM treatment for PCI patients is to explore the influence of TCM on inflammatory factors and mental health of PCI patients and medication rules.There are few studies on TCM external treatment and animal experiments,and further exploration in this field needs to be made.
出处
《中医临床研究》
2024年第22期111-117,共7页
Clinical Journal Of Chinese Medicine
基金
山东省中医药科技项目(特色疗法)(Z-2022097T)。
关键词
中医药
经皮冠状动脉介入术
可视化分析
Traditional Chinese medicine
Percutaneous coronary intervention
Visualization analysis