摘要
目的探讨智能检验报告系统的开发及其在海军基层医疗机构中的应用。方法开发基于人工智能技术的智慧检验系统(AI LEON),并采用回顾性队列分析和前瞻性分析相结合的方法进行训练和验证,对A1 LEON在提升医务人员诊疗水平和快速诊断能力方面的作用进行评估,同时统计分析患者端使用数据。结果AI LEON系统整合了大量实验室和诊断数据(730113例),实现了对2071个实验室指标的自动分析,涵盖10种器官/系统的441种疾病,显著提升了诊断准确性和效率。患者端使用数据显示该系统在实际应用中表现出高效的功能使用频率和用户参与度,进一步验证了其在提升诊断准确性和效率方面的优势。结论AI LEON系统在海军基层医疗机构中展现出卓越的诊断能力,有望为官兵提供坚实的诊断支持和健康咨询保障。
ObjectiveTo discuss the development of an intelligent testing system and to evaluate its application in naval medical units at small-troop level.MethodsA knowledge and data-driven laboratory intelligence testing system(AI-based Lab tEst tO diagNosis,AILEON)was developed based on artificial intelligence technology,which was then trained and validated by the retrospective cohort analysis and the prospective cohort analysis.The promoting effect of the diagnostic system was evaluated on the diagnosing-treating and rapid diagnosing competence of medical personnel.Meanwhile,the user data of the patient client of the system were statistically analyzed.ResultsBased on a large amount of laboratory and diagnostic data(730,113 cases),the intelligent testing system automatically analyzed 2,071 laboratory indicators,covering 441 common diseases in 10 organ/system,which exhibited high accuracy and good data interpretability in clinical data analysis.According to the data of the patient client,the AI LEON shown high frequency of use and user engagement in actual application,which further exhibited the advantage of improving the accuracy and efficiency of diagnosis.ConclusionAILEON demonstrated excellent diagnostic capabilities in naval medical units at small-troop level and is expected to provide strong support for diagnosis and health counseling for officers and sailors.
作者
曹宏伟
施佳
权秦
马晓菁
Cao Hongwei;Shi Jia;Quan Qin;Ma Xiaojing(Ofice of Information,The First Affiliated Hospital of Naval Medical University,Shanghai 200433,China;Section of Servicemen Healthcare,Medical Affairs Office,The First Affiliated Hospital of Naval Medical University,Shanghai200433,China)
出处
《中华航海医学与高气压医学杂志》
CAS
CSCD
2024年第4期524-528,共5页
Chinese Journal of Nautical Medicine and Hyperbaric Medicine
基金
军委后勤保障部卫生局(22BJZ06)。
关键词
人工智能
检验系统
基层医疗机构
诊断
Artificial intelligence
Testing System
Medical unit at small-troop level
Diagnosis