期刊文献+

MiniBranRAP:极小化分支判断数的AMG粗网格矩阵计算并行算法

MiniBranRAP:A minimizing branch parallel algorithm of the coarse matrix computation in AMG solver
下载PDF
导出
摘要 代数多重网格(AMG)是科学工程计算与工业仿真领域求解大规模稀疏线性代数方程组最常用的算法之一。在启动(Setup)阶段的每个网格层,AMG需要基于限制算子R、当前细网格层矩阵A和插值算子P的稀疏矩阵乘积来计算粗网格矩阵A c=RAP,该过程是AMG并行性能的主要瓶颈。首先发现了主流AMG解法器中RAP并行算法由于分支判断的平方复杂度导致的性能瓶颈,并结合稀疏矩阵CSR的行主序特点,提出了具有线性复杂度分支判断数的RAP并行算法MiniBranRAP。该算法集成到JXPAMG解法器中,并通过实际应用算例验证了算法的有效性。测试结果表明,对于6个来自实际应用的典型算例,相对于Hypre最新版本的BoomerAMG解法器,基于MiniBranRAP的JXPAMG解法器在28个进程上将Setup阶段的计算效率平均加速3.3倍、最高加速9.3倍。 Algebraic multi-grid(AMG)is one of the most commonly used algorithms for solving large-scale sparse linear algebra equations in the field of scientific engineering computing and industrial simulation.For each grid layer in the Setup phase,AMG needs to calculate the coarse grid matrix A c=RAP through the product of three sparse matrix based on the restriction operator R,the current fine grid matrix A,and the interpolation operator P,which has become the main bottleneck in the parallel performance of AMG.This paper first discovers that the performance bottleneck of the RAP parallel algorithm in mainstream AMG solvers is caused by the quadratic complexity of branch judgments.Then,utilize the row-based order characteristics of the sparse matrix format CSR,and propose a RAP parallel algorithm called MiniBranRAP with linear complexity of branch judgment counts.The algorithm is integrated into the JXPAMG solver,and the effectiveness of the algorithm is verified through practical examples.The numerical test results show that,for 6 typical examples from practical applications,compared with the latest version of Hypre's BoomerAMG solver,the JXPAMG solver based on MiniBranRAP can speed up the computation efficiency of the Setup phase by an average of 3.3 times and a maximum of 9.3 times on 28 processors.
作者 杜皓 毛润彰 邓蕴桐 黄思路 徐小文 DU Hao;MAO Run-zhang;DENG Yun-tong;HUANG Si-lu;XU Xiao-wen(Graduate School of China Academy of Engineering Physics,Beijing 100094;Institute of Applied Physics and Computational Mathematics,Beijing 100088,China)
出处 《计算机工程与科学》 CSCD 北大核心 2024年第7期1158-1166,共9页 Computer Engineering & Science
基金 国家自然科学基金(62032023)。
关键词 代数多重网格(AMG) 粗网格矩阵计算 分支判断 Hypre JXPAMG algebraic multi-grid(AMG) coarse grid matrix computation branch Hypre JXPAMG
  • 相关文献

参考文献2

二级参考文献39

  • 1徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 2徐小文,莫则尧.并行代数多重网格算法可扩展性能分析[J].计算物理,2007,24(4):387-394. 被引量:9
  • 3范征锋,徐小文,孙文俊,等.辐射流体界面不稳定性模拟程序LARED—S.见:第十六届全国流体力学数值方法研讨会,凤凰,2013. 被引量:1
  • 4Brandt A, McCormick S, Ruge J. Algebraic multigrid for sparse matrix equations. In: Sparsity and its Application. Cambridge: Cambridge University Press, 1984. 257-284. 被引量:1
  • 5Ruge J W, Stueben K. Algebraic multigrid. In: Multigrid Methods. Philadelphia: SIAM, 1987. 73-130. 被引量:1
  • 6Stueben K. Algebraic Multigrid (AMG): An Introduction With Applications. Sankt Augustin: GMD- Forschungszentrum Informationstechnik, 1999. 被引量:1
  • 7Yang U M. Parallel algebraic multigrid methods-high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers. Berlin: Springer-Verlag, 2006. 209-236. 被引量:1
  • 8Mo Z Y, Xu X W. Relaxed RSO or CLJP coarsening strategy for parallel AMG methods. Parall Comput, 2007, 33: 174-185. 被引量:1
  • 9Baker A H, Gamblin T, Schulz M, et al. Challenges of scaling AMG across modern multicore architectures. In: Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), Anchorage, 2011. 275-286. 被引量:1
  • 10Baker A H, Falgout R D, Gamblin T, et al. Scaling AMG solvers: on the road to Exascale. In: Proceedings of International Conference on Competence in High Performance Computing, Schwetzingen, 2010. 215-226. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部