期刊文献+

求解大规模稀疏线性代数方程组序列的自适应AMG预条件策略 被引量:6

An adaptive AMG preconditioning strategy for solving large-scale sparse linear systems
原文传递
导出
摘要 时间相关偏微分方程隐式离散后,通常需要求解一个稀疏线性代数方程组序列.利用序列中相邻方程组性质的差异性与相似性,自适应地选取预条件子,提升方程组序列的并行求解效率,从而缩短总体求解时间,是一个值得研究的问题.本文针对科学与工程计算中广泛使用的代数多重网格(AMG)预条件子,设计了方程组序列相关的自适应预条件策略.通过惯性约束聚变(ICF)的辐射流体力学数值模拟典型应用,验证了该策略的有效性.测试结果表明,在某高性能计算机的3125个CPU核上,自适应预条件策略可将并行效率从47%提升到61%,将模拟总时间从19.7 h降为14.5 h. A series of sparse linear systems must be solved in applications that are based on the implicit solution of time-dependent partial differential equations(PDEs).Preconditioned iterative methods are usually employed to solve such sparse linear systems.AMG is one of the most popular preconditioners in real applications.However,it results in poor parallel scalability,owing to its setup phase.In this paper,by utilizing the differences and similarities in property among the systems in series,an adaptive AMG preconditioning strategy is presented to improve the parallel scalability.The results obtained for a radiation hydrodynamics computation within an ICF simulation demonstrate the efficiency and improvement of the adaptive strategy.For a typical model,the new strategy improves the parallel efficiency from 47% to 61%,and reduces the CPU time from 19.7 h to 14.5 h.
出处 《中国科学:信息科学》 CSCD 北大核心 2016年第10期1411-1420,共10页 Scientia Sinica(Informationis)
基金 国家重点基础研究发展计划(973)(批准号:2011CB309702) 国家自然科学基金(批准号:61370067 91430218 91530324)资助项目
关键词 稀疏线性解法器 迭代方法 预条件子 代数多重网格算法(AMG) 并行计算 sparse linear solver iterative methods preconditioner algebraic multigrid(AMG) parallel computing
  • 相关文献

参考文献30

  • 1Brandt A, McCormick S, Ruge J. Algebraic multigrid for sparse matrix equations. In: Sparsity and its Application. Cambridge: Cambridge University Press, 1984. 257-284. 被引量:1
  • 2Ruge J W, Stueben K. Algebraic multigrid. In: Multigrid Methods. Philadelphia: SIAM, 1987. 73-130. 被引量:1
  • 3Stueben K. Algebraic Multigrid (AMG): An Introduction With Applications. Sankt Augustin: GMD- Forschungszentrum Informationstechnik, 1999. 被引量:1
  • 4Yang U M. Parallel algebraic multigrid methods-high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers. Berlin: Springer-Verlag, 2006. 209-236. 被引量:1
  • 5徐小文,莫则尧.并行代数多重网格算法可扩展性能分析[J].计算物理,2007,24(4):387-394. 被引量:9
  • 6Mo Z Y, Xu X W. Relaxed RSO or CLJP coarsening strategy for parallel AMG methods. Parall Comput, 2007, 33: 174-185. 被引量:1
  • 7Baker A H, Gamblin T, Schulz M, et al. Challenges of scaling AMG across modern multicore architectures. In: Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), Anchorage, 2011. 275-286. 被引量:1
  • 8Baker A H, Falgout R D, Gamblin T, et al. Scaling AMG solvers: on the road to Exascale. In: Proceedings of International Conference on Competence in High Performance Computing, Schwetzingen, 2010. 215-226. 被引量:1
  • 9Baker A H, Falgout R D, Gahvari H, et al. Preparing Algebraic Multigrid for Exascale. LLNL Technical Report LLNL-TR-533076. 2012. 被引量:1
  • 10Falgout R, Schroder J. Non-Galerkin coarse grids for algebraic multigrid. SIAM J Sci Comput, 2014, 36: 309-334. 被引量:1

二级参考文献49

共引文献60

同被引文献28

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部