摘要
自适应循环发动机是基于变循环发动机设计理念基础并充分考虑飞发一体化设计、热管理等综合性能的面向未来飞行平台的先进动力装置,可通过诸多可调机构实现发动机涵道比、增压比、流量以及工作模式的灵活改变,从而适应不同飞行任务的复杂任务剖面需求,获得更大飞行包线内的性能优化。本文基于自适应循环发动机的性能计算仿真模型,在相关研究基础上结合模式转换和加减速过程实现快速推力变化过程,根据模式转换与加减速控制规律设计,开展典型算例下的快速推力变化过渡过程性能分析并验证其控制规律设计方法可行性,在亚声速巡航工况下,发动机在以M3模式叶尖风扇最小角度状态下,低压转子相对物理转速从0.6加速至1.0,最大可使终止推力增大32.4%,相较于单一模式加减速过渡过程,推力变化范围更宽,加速时间更短,转速变化范围更小。
As an advanced power device designed for the future flight platforms,the adaptive cycle engine is based on the concept of a variable cycle engine and takes into account various factors such as aircraft-engine integrated design and thermal management to ensure comprehensive performance.This engine drives more variable components to adjust bypass ratio,pressure ratio,gas flow rate and working mode,which can adapt to the complex requirements of different flight missions and obtain performance optimization in a larger flight envelope.Based on the adaptive cycle engine performance model and previous performance researches,this paper puts forward a new transient process to realize rapid thrust change via combined the acceleration/deceleration with operating mode switch transient process and carries out the contrast verification via the performance model.According to acceleration/deceleration and mode switch control schedule design,the rapid thrust change transient process performance analysis on typical working condition is carried out and the related control schedule design method feasibility is verified.Under the subsonic cruise condition,the relative physical speed of low pressure rotor of engine rises up from 0.6 to 1.0 at the minimum angle of the fan on blade of mode M3,leading to the maximum termination thrust growth of 32.4%.Compared with the single mode acceleration and deceleration transient process,the thrust variation range is wider,the acceleration time is shorter,and the rotate speed variation range is smaller.
作者
蒋勇睿
徐义皓
张纪元
董学智
郑俊超
陈敏
JIANG Yongrui;XU Yihao;ZHANG Jiyuan;DONG Xuezhi;ZHENG Junchao;CHEN Min(Institute for Aero Engine,Tsinghua University,Beijing 100084,China;School of Energy and Power Engineering,Beihang University,Beijing 100191,China;Research Institute of Aero-Engine,Beihang University,Beijing 100191,China)
出处
《推进技术》
EI
CAS
CSCD
北大核心
2024年第6期21-31,共11页
Journal of Propulsion Technology
基金
国家自然科学基金(51206005
51776010)。