期刊文献+

基于K-means聚类的超启发式跨单元调度方法

Hyper-heuristic Approach with K-means Clustering for Inter-cell Scheduling
下载PDF
导出
摘要 结合我国制造业实际生产状况,针对柔性作业车间跨单元调度问题,提出一种基于K-means聚类的超启发式算法。应用K-means聚类算法将相近属性的实体划入相应“工件簇”决策块中,采用蚁群算法为每个决策块选择启发式规则;对每个决策块内的实体运用相应的启发式规则产生调度解。仿真结果表明:该算法以决策块的形式适度增大了计算粒度,有效降低了算法时间复杂度,以聚类的方式将具有相近属性的被加工实体进行聚集,有利于为不同属性的实体选择合适的规则。该算法提高了计算效率,具有较好的优化性能,是解决柔性跨单元调度的一种有效算法。 According to the actual production situation of China's manufacturing industry,a hyper-heuristic algorithm based on K-means clustering is proposed for inter-cell scheduling problem of flexible job-shop.K-means clustering is applied to group entities with similar attributes into the corresponding work cluster decision blocks,and the ant colony algorithm is used to select heuristic rules for each decision block.The optimal scheduling solutions are generated by using corresponding heuristic rules for scheduling of entities in each decision block.Computational results show that,the computational granularity is properly increased by the form of decision blocks,and the computational efficiency of the optimal algorithm is improved.The clustering algorithm could group the processed entities with similar attributes and the suitable rules for entities with different attributes are easy to be chosen.The proposed approach not only improves computational efficiency but also exhibits good optimization performance,and provides a scientific optimization solution for inter-cell scheduling problems.
作者 赵彦霖 田云娜 Zhao Yanlin;Tian Yunna(School of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期941-956,共16页 Journal of System Simulation
基金 国家自然科学基金(61763046,62041212)。
关键词 跨单元调度 超启发式算法 决策块 聚类 蚁群算法 inter-cell scheduling hyper-heuristic algorithm decision block clustering ant colony optimization
  • 相关文献

参考文献9

二级参考文献86

  • 1王思涵,黎阳,李新宇.基于鲸鱼群算法的柔性作业车间调度方法[J].重庆大学学报(自然科学版),2020,43(1):1-11. 被引量:18
  • 2Li D N, Wang Y. Production scheduling in intercell cooperative production mode. In: Proceedings of the 24th Chinese Control and Decision Conference (CCDC). Taiyuan: IEEE, 2012. 504-506. 被引量:1
  • 3Garza O, Smunt T L. Countering the negative impact of intercell flow in cellular manufacturing. Journal of Operations Management, 1991, 10(1): 92-118. 被引量:1
  • 4Johnson D J, Wemmerlov U. Why does cell implementation stop? factors influencing cell penetration in manufacturing plants. Production and Operations Management, 2004, 13(3): 272-289. 被引量:1
  • 5Li D N, Meng X W, Li M, Tian Y N. An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine. Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-013-0859-2. 被引量:1
  • 6Mosbah A B, Dao T M. Optimimization of group scheduling using simulation with the meta-heuristic extended great deluge (EGD) approach. In: Proceedings of the 2010 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Macao: IEEE, 2010. 275-280. 被引量:1
  • 7Yousef G K, Reza T M, Amir K. Solving a multi-criteria group scheduling problem for a cellular manufacturing system by scatter search. Journal of the Chinese Institute of Industrial Engineers, 2011, 28(3): 192-205. 被引量:1
  • 8Solimanpur M, Elmi A. A tabu search approach for group scheduling in buffer-constrained flow shop cells. International Journal of Computer Integrated Manufacturing, 2011, 24(3): 257-268. 被引量:1
  • 9Tang J F, Wang X Q, Kaku I, Yung K L. Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. Journal of Intelligent Manufacturing, 2009, 21(4): 525-537. 被引量:1
  • 10Elmi A, Solimanpur M, Topaloglu S, Elmi A. A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts. Computers & Industrial Engineering. 2011, 61(1): 171-178. 被引量:1

共引文献328

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部