期刊文献+

两种聚类算法的比较及其应用

Comparison and Application of Two Clustering Algorithms
下载PDF
导出
摘要 聚类分析是一种非常重要的数据分析和数据处理方法,它在经济学、统计学、医学、生物学以及机器学习等领域都有广泛的应用。聚类分析在大数据时代是一个非常活跃的研究分支,能够有效得到各类隐藏信息和分类结果,从而进行优化与决策。目前已经研发出许多聚类算法,具体可分为基于划分的聚类、层次聚类、基于密度的聚类、基于图的聚类以及基于模型的聚类。主要对K-means聚类算法以及DBSCAN密度聚类算法进行详细的理论介绍,并将这两种算法用于实例分析进行比较得到各自的优缺点以及对未来研究工作的具体展望。 Cluster analysis is a very important data analysis and data processing method.It has a wide range of applications in the fields of economics,statistics,medicine,biology and machine learning.Cluster analysis is a very active research branch in the era of big data,which can effectively obtain all kinds of hidden information and classification results for optimizing and making decisions.At present,many clustering algorithms have been developed,which can be divided into partition-based clustering,hierarchical clustering,density-based clustering,graph-based clustering and model-based clustering.This paper mainly introduces K-means clustering algorithm and DBSCAN density clustering algorithm in details and compares these two algorithms for example analysis to obtain their respective advantages and disadvantages and specific prospects for future research work.
作者 成晓敏 CHENG Xiao-min(Hubei Polytechnic Institute,Xiaogan 432000,China)
出处 《湖北职业技术学院学报》 2024年第1期91-96,共6页 Journal of Hubei Polytechnic Institute
关键词 K-MEANS算法 DBSCAN算法 数据挖掘 聚类分析 K-means algorithm DBSCAN algorithm data mining cluster analysis
  • 相关文献

参考文献9

二级参考文献45

共引文献1497

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部