期刊文献+

问题诊断领域的智能对话系统研究

Research on intelligent dialogue systems in the field of problem diagnosis
下载PDF
导出
摘要 在人工智能领域,智能对话系统有着重要的研究意义和应用价值。智能对话系统是一种通过自然语言与人进行沟通交流的人机交互系统,它被定义为未来各种服务的入口。然而针对问题诊断领域的智能对话系统研究相对较少。本文设计并实现了应用于问题诊断领域的任务型智能对话系统,采用了管道方法(Pipeline Method)的架构设计了包括自然语言理解、对话管理、知识库和自然语言生成的对话流程,并提出了一套新颖的知识库模型和对话管理方法:基于问题症状和问题根因的二分图知识组织方式和基于概率分布的问题根因对话策略。该系统作为远程诊断的一个解决方案,利用人工智能打通医疗全科领域的关键技术点,形成可落地、可用、可工程化的全科辅助诊断对话系统。针对从公开出版物上随机选取的23种常见疾病的病例数据,本系统的召回率得到了较好的结果,其中前四召回率接近专业医生的诊断结果。本系统达到了缩短响应时间,降低成本,提升客户满意度的效果。 In the field of AI,intelligent dialogue systems have important research significance and application value.Intelligent dialogue system is a human-computer interaction system that communicates with people through natural language,and is defined as the entrance to various future services.However,there is relatively little research on intelligent dialogue systems in the field of problem diagnosis.In this article a task-based intelligent dialogue system applied in the field of problem diagnosis was designed and implemented,using the Pipeline Method architecture to design a dialogue process that includes natural language understanding,dialogue management,knowledge base,and natural language generation.And a novel knowledge base model and dialogue management method were proposed:a bipartite graph knowledge organization method based on problem symptoms and root causes,and a problem root cause dialogue strategy based on probability distribution.This system,as a solution for remote diagnosis,utilized artificial intelligence to connect key technical points in the field of medical general practice,forming a practical,usable,and engineering oriented general practice auxiliary diagnostic dialogue system.For the randomly selected case data of 23 common diseases from public publications,the recall rate of this system has achieved good results with the top four recall rates close to the diagnostic results of professional doctors,and this system achieves the effects of shortening response time,reducing costs,and improving customer satisfaction.
作者 徐桂忠 李起成 XU Guizhong;LI Qicheng(School of Information and Communication Engineering,Communication University of China,Beijing 100024,China;Information Science Academy of China Electronics Technology Group Corporation,Beijing 100041,China;College of Computer Science,Nankai University,Tianjin 300350,China)
出处 《中国传媒大学学报(自然科学版)》 2023年第6期44-49,共6页 Journal of Communication University of China:Science and Technology
关键词 智能对话系统 对话管理 对话策略 二分图 intelligent dialogue systems dialogue management dialogue strategy bipartite graph
  • 相关文献

参考文献4

二级参考文献10

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部