期刊文献+

三维螺旋桨防冰热载荷分布研究

Study on Anti⁃icing Heat Load Distribution for a Three⁃Dimensional Propeller
下载PDF
导出
摘要 防冰热载荷分布预测是螺旋桨飞机防冰系统设计的关键,目前对螺旋桨飞机防冰热载荷的研究却十分匮乏。基于多参考系和Messinger热力学模型对三维螺旋桨进行了模拟,分析了防冰热载荷的影响。结果表明:防冰热载荷主要集中在叶片前缘,沿叶片展向先增大后减小;随着来流速度的增加,防冰功率及范围均先增大后减小。由于旋转效应的影响,迎角的影响可以忽略不计。此外,随着环境温度的降低,防冰功率呈线性增加。基于CCAR-25附录C规定的严重结冰条件,转速为660 r/min时,叶片的防冰范围在弦向上极限为2.1%,在弦向下极限为6.7%;防冰最大功率为9.5 kW/m2。单台螺旋桨防冰功率超过1.96 kW。本研究为螺旋桨飞机的表面防冰提供了科学的解释,为螺旋桨飞机防冰系统的安装提供了理论依据。 At present,research on the anti-icing heat loads of propeller aircraft is inadequate,while predicting the distribution of anti-icing heat loads is crucial for designing propeller aircraft anti-icing systems.A three-dimensional propeller is simulated based on the multiple reference frame and Messinger thermodynamic model to analyze the effect of the anti-icing heat load.The results indicate that the majority of the anti-icing heat loads concentrates at the leading edge of the blade,with an initial increase and subsequent decrease along the spreading direction.As the incoming flow speed increases,both the value and range of anti-icing power initially increase and then decrease.The influence of the angle of attack is negligible due to the rotating effect.The anti-icing power increases linearly as the temperature drops.Considering the provisions in Appendix C of CCAR-25,when the rotation speed is 660 r/min,the chordwise upward limit is 12.1%,the chordwise downward limit is 6.7%,and the maximum anti-icing power density is 9.5 kW/m2.The anti-icing power of the single propeller exceeds 1.96 kW.This study provides a scientific explanation for the surface anti-icing of propeller aircraft and a theoretical basis for the installation of anti-icing systems on propeller aircraft.
作者 吴主龙 易贤 熊华杰 周志宏 田晓宝 WU Zhulong;YI Xian;XIONG Huajie;ZHOU Zhihong;TIAN Xiaobao(College of Architecture and Environment,Sichuan University,Chengdu 610065,P.R.China;Key Laboratory of Icing and Anti/De-icing of China Aerodynamics Research and Development Center,Mianyang 621000,P.R.China)
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2023年第6期688-702,共15页 南京航空航天大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No.12072213) the National Science and Technology Major Project from Ministry of Science and Technology of China (No.J2019-Ⅲ-00100054) the National Numerical Windtunnel from China Aerodynamics Research and Center (No. NNW2019JT01-023)。
关键词 飞机防冰 防冰热载荷 能量 旋转机械 螺旋桨 aircraft deicing anti-icing heat load energy rotating machine propeller
  • 相关文献

参考文献11

二级参考文献69

  • 1卜雪琴,林贵平,郁嘉.三维内外热耦合计算热气防冰系统表面温度[J].航空动力学报,2009,24(11):2495-2500. 被引量:24
  • 2卜雪琴,林贵平,彭又新,郁嘉.防冰热载荷计算的一种新方法[J].航空学报,2006,27(2):208-212. 被引量:18
  • 3常士楠,艾素霄,毕文明,袁修干.飞机发动机进气道防冰系统的设计计算[J].北京航空航天大学学报,2007,33(6):649-652. 被引量:15
  • 4裘燮纲,韩凤华.飞机防冰系统[M].北京:航空专业教材编审组,1985. 被引量:17
  • 5Fortin G, Perron J. Wind turbine icing and de-icing [R]. AIAA 2009-274, 2009. 被引量:1
  • 6Matthew C H, Muhammad S V, Tomas W, et al. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Wind Energy, 2010,98 ( 12 ) : 724-729. 被引量:1
  • 7Duncan T, LeBlanc M, Morgan C, et al. Understanding icing losses and risk of ice throw at operating wind farms[J]. Winterwind, 2008,45(1):35-41. 被引量:1
  • 8Laakso T, Holttinen H, Tonsten G, et al. State-of- the-art of wind energy in cold climates[M]. [S. l. ]: VTT Technical Research Centre of Einland, 2010. 被引量:1
  • 9Chung J, Choo Y, Reehorst A, et al. Navier-Stokes analysis of flowfield characteristics of an ice-contaminated aircraft wingp[R]. AIAA 1999-0375,1999. 被引量:1
  • 10Shim J, Chung J, Lee K D. A comparison of turbulence modeling in flow analysis of iced airfoits[R]. AIAA 2000-3920, 2000. 被引量:1

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部