期刊文献+

基于兵棋演习数据的作战行动关系分析方法

Analysis Method ofAction Relationship Based on Wargaming Data
下载PDF
导出
摘要 兵棋演习数据中蕴含大量作战行动之间的关系,通过对这些关联关系进行分析和挖掘,可以发现关键行动,辅助描述作战过程。研究作战行动共现网络模型的构建,分析行动关系种类和行动关系提取方法,进行关键行动提取研究。实验结果表明,针对兵棋演习作战行动数据集,采取行动关系挖掘算法以及行动重要度排序算法,可以有效挖掘行动间隐藏的关系,提取推演数据中的关键行动,为演习复盘评估提供帮助。 Wargaming data contain a large number of relationships between combat operations.Through the analysis and mining of these relationships,we can find critical actions and help describe the combat process.This paper studied the construction of combat action co-occurrence network model,analyzed the types of action relations and the extraction methods of action relations,and studied the extraction methods of critical actions on this basis.The experimental results show that the action relationship mining algorithm and action importance ranking algorithm can effectively mine the hidden relationship between actions,extract the critical actions in the deduction data,and provide help for the re-evaluation of the wargaming.
作者 吴蕾 司光亚 柳少军 伍文峰 WU Lei;SI Guang-ya;LIU Shao-jun;WU Wen-feng(Joint Operations College,National Defence University,Beijing 100091,China;Army Aviation Research Institute,Beijing 101121,China)
出处 《计算机仿真》 北大核心 2023年第8期18-23,338,共7页 Computer Simulation
基金 军内科研项目(1523154526063)。
关键词 兵棋演习 行动关系 关键行动 作战过程描述 Wargaming Action relationship Critical action Operational process description
  • 相关文献

参考文献8

二级参考文献62

  • 1张最良,李露阳.军事战略运筹分析方法研究的几个重要方向[J].军事运筹与系统工程,2008,22(2):3-8. 被引量:2
  • 2邓桂龙,刘智慧,贾志东.作战仿真实验数据关联规则挖掘研究[J].军事运筹与系统工程,2008,22(4):46-50. 被引量:12
  • 3胡钢锋,李德毅,陈桂生,韩明畅.一种网络化数据挖掘方法研究[J].微电子学与计算机,2006,23(9):126-128. 被引量:5
  • 4王鸿洁,郭晶,李学军,常国岑.网络化作战C2系统建模与仿真研究[J].系统仿真学报,2007,19(9):1897-1901. 被引量:8
  • 5Ahn D. The Stages of Event Extraction//Proc of the COLING-ACL Workshop on Annotating and Reasoning about Time and Events. Sydney, Australia, 2006 : 1 - 8. 被引量:1
  • 6Surdeanu M, Harabagiu S, Williams J, et al. Using Predicate-Argu- ment Structures for Information Extraction//Proc of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo, Japan, 2003:8-15. 被引量:1
  • 7Girju R. Automatic Detection of Causal Relations for Question Answering// Proc of the 41 st ACL Workshop on Multilingual Summarization and Question Answering. Sapporo, Japan, 2003:76 -83. 被引量:1
  • 8Filatova E, Hatzivassiloglou V. Event-Based Extractive Summarization // Proc of ACL Workshop on Summarization. Barcelona, Soain, 2004:104-111. 被引量:1
  • 9Pechsiri C, Kawtrakul A. Mining Causality from Texts for Question Answering System. IEICE Trans on Information and Systems, 2007, 90(10) : 1523 -1533. 被引量:1
  • 10Khoo C, Kornfilt J, Oddy R, et al. Automatic Extraction of Cause- Effect Information from Newspaper Text without Knowledge-Based Inferencing. Literary and Linguistic Computing, 1998, 13(4) : 177- 186. 被引量:1

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部