期刊文献+

基于双层模型的维吾尔语突发事件因果关系抽取 被引量:11

Causal Relation Extraction of Uyghur Emergency Events Based on Cascaded Model
下载PDF
导出
摘要 针对传统事件因果关系识别覆盖范围小和人工标注代价高等不足,提出了一种基于双层模型的维吾尔语突发事件因果关系抽取方法.该方法采用分治思想,将因果关系抽取问题转化为对事件序列的两次模式识别标注.采用Bootstrapping算法,在第一次模式识别时,标注因果关系的语义角色,并将标注的语义角色标签作为新的特征传递给第二层模式识别,用于因果关系边界标注.该方法用于维吾尔语突发事件显式因果关系的抽取准确率为85.39%,召回率为77.53%,证明了本文提出的方法在维吾尔语主题突发事件因果关系抽取上的有效性和实用性. Because the traditional events causal relation has the disadvantages of small recognition coverage and the labeling cost is high, a method for causal relation extraction of Uyghur emergency events is presented based on cascaded model. Utilizing the divide-and-conquer strategy, it converts the problem of causal relation extraction to two pattern recognition labeling of event sequence. By applying the bootstrapping algorithm, the method labels the semantic role of causal relation in the first layer of pattern recognition, then utilizes the semantic role label as a new feature and transfers it to the second layer of pattern recognition for labeling causal relation boundary. This method has been used in the explicit causal relation extraction of Uyghur emergency events, and the results have shown that the precision rate and the recall rate can reach 85.39 % and 77.53 %, indicating the efficiency and practicability of the method of causal relation extraction of Uyghur topic emergency events.
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期771-779,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61262064 60963017 61063026 61063043) 国家社会科学基金(10BTQ045 11XTQ007)资助~~
关键词 因果关系 维吾尔语 突发事件 BOOTSTRAPPING 模式软匹配 Causal relation, Uyghur, emergency events, bootstrapping, pattern soft matching
  • 相关文献

参考文献17

  • 1计雷等编著..突发事件应急管理[M].北京:高等教育出版社,2006:197.
  • 2Puente C, Sobrino A, José A, Olivas, Merlo R. Extraction, analysis and representation of imperfect conditional and causal sentences by means of a semi-automatic process. In: Proceedings of the 2010 IEEE International Conference on Fuzzy System. Barcelona, Spain: IEEE, 2010, 1-8. 被引量:1
  • 3Pechsiri C, Kawtrakul A. Mining causality from texts for question answering system. IEICE-Transactions on Information and Systems, 2007, E90-D(10): 1523-1533. 被引量:1
  • 4Lee S M, Shin J A. Definition and extraction of causal relations for QA on fault diagnosis of devices. In: Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence. Dayton, USA: IEEE, 2008. 82-85. 被引量:1
  • 5Ittoo A, Bouma G. Extracting explicit and implicit causal relations from sparse, domain-specific texts. In: Proceedings of 16th International Conference on Applications of Natural Language to Information Systems. Berlin, Heidelberg: Springer-Verlag, 2011. 52-63. 被引量:1
  • 6Girju R, Moldovan D. Text mining for causal relations. In: Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference. Florida, USA: AAAI Press, 2002. 360-364. 被引量:1
  • 7Kaplan R M, Berry-Rogghe G. Knowledge-based acquisition of causal relationships in text. Knowledge Acquisition, 1991, 3(3): 317-337. 被引量:1
  • 8Khoo C S G, Kornfilt J, Myaeng S H, Oddy R N. Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing. Literary and Linguistic Computing, 1998, 13(4): 177-186. 被引量:1
  • 9干红华,潘云鹤.一种基于事件的因果关系的结构分析方法[J].模式识别与人工智能,2003,16(1):56-62. 被引量:9
  • 10Girju R. Automatic detection of causal relations for question answering. In: Proceedings of the 41st ACL Workshop on Multilingual Summarization and Question Answering. Sapporo, Japan: ACL, 2003. 76-83. 被引量:1

二级参考文献63

共引文献115

同被引文献55

引证文献11

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部