摘要
本研究将三聚氰胺在静态空气中焙烧合成的g-C_(3)N_(4)作为载体,通过简单的浸渍还原法将Rh纳米粒子负载在gC_(3)N_(4)载体上制备出Rh/g-C_(3)N_(4)催化剂。采用多种表征方法对催化剂的微观结构、组成成分进行研究。此外,还研究了反应温度和NaOH浓度对催化剂催化水合肼分解的影响。研究结果表明,催化剂优异的催化活性源于g-C_(3)N_(4)载体为金属Rh提供了锚定位点,并且载体和金属之间存在强相互作用。催化剂的催化活性随着反应温度的升高而不断提升,当NaOH浓度为0.75 mol/L时Rh/g-C_(3)N_(4)催化剂具有最高的催化活性。Rh/g-C_(3)N_(4)催化剂催化水合肼分解制氢的活化能为30.7 kJ/mol,TOF值为1466.4 h^(-1),在经过五次循环后,催化剂依旧保持着较好的催化活性,表明催化剂具有良好的循环稳定性。
In this paper,g-C_(3)N_(4) obtained by calcining melamine at high temperature in static air was used as the carrier,and the precious metal Rh was used as the active component.The Rh nanoparticles were supported on the g-C_(3)N_(4) support by a simple impregnation reduction method to prepare high activity and high selectivity.Various characterization methods were used to study the microstructure and composition of the catalyst.In addition,the effect of reaction temperature and NaOH concentration on the catalytic decomposition of hydrous hydrazine was also investigated.The results show that the excellent catalytic activity of the catalyst stems from the fact that the g-C_(3)N_(4) support provides anchor sites for the metal Rh and the support and the strong metal-support interactions.The catalytic activity of the catalyst increases with the increase of the reaction temperature,and the Rh/g-C_(3)N_(4) catalyst has the highest catalytic activity when the NaOH concentration is 0.75 mol/L.The Rh/g-C_(3)N_(4) catalyst has an activation energy of 30.7 kJ/mol and TOF value of 1466.4 h^(−1) for catalyzing the decomposition of hydrous hydrazine for hydrogen production.After 5 cycles,the catalyst still maintains a good catalytic activity,indicating that the catalyst has a good cyclic stability.
作者
邱小魁
孙佳丽
花俊峰
郑君宁
万超
许立信
QIU Xiao-kui;SUN Jia-li;HUA Jun-feng;ZHENG Jun-ning;WAN Chao;XU Li-xin(GBXF Silicones Co.,Ltd,Ma’anshan 243000,China;Zhejiang Environment Technology Co.,Ltd,Hangzhou 310027,China;School of Chemistry and Chemical Engineering,Anhui University of Technology,Ma’anshan 243000,China;College of Chemical Engineering and Biological Engineering,Zhejiang University,Hangzhou 310027,China;Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University,Tianjin 300071,China)
出处
《燃料化学学报(中英文)》
EI
CAS
CSCD
北大核心
2023年第9期1313-1320,共8页
Journal of Fuel Chemistry and Technology
基金
国家自然科学基金青年基金(22108238,U22A20408)
安徽省自然科学基金青年基金(1908085QB68)
安徽省科技重大专项(201903a05020055)
中国博士后面上项目(2019M662060)
特别资助站中项目(2020T130580,PC2022046)资助。