期刊文献+

g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢 被引量:13

g-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light
下载PDF
导出
摘要 光生电子-空穴对的快速复合是导致半导体光催化剂性能不佳的重要因素之一,构建异质结是分离光生电子-空穴对的有效方法。结合热缩合和两步水热反应构建了g-C3N4-CdS-NiS2复合纳米管,并进一步研究了在可见光照射下不同CdS含量的g-C3N4-CdS-NiS2分解水制氢的光催化性能。结果表明,当CdS含量为10%(质量)时,三元复合物的产氢速率最高(50.9μmol·h−1),是纯g-C3N4纳米管的25倍,是g-C3N4-CdS和g-C3N4-NiS2二元复合物的11倍。而且,经过五次循环光催化反应后,产氢速率保持不变。光催化制氢性能的提高主要源于g-C3N4、CdS与NiS2形成的异质结促进光生电子和空穴的迁移及电子-空穴对的分离。 Rapid recombination of photogenerated electron-hole pairs is one of important factors leading to poor performance of semiconductor photocatalysts.Constructing a heterojunction is an effective method for separation of photogenerated electron-hole pairs.In the present work,g-C3N4-CdS-NiS2 composite nanotube was synthesized via thermal condensation using urea and thiourea as precursors,and subsequent two-step hydrothermal reactions.The photocatalytic activity of g-C3N4-CdS-NiS2 composite was investigated for H2 generation from water using triethanolamine as sacrificial agent under visible light irradiation.The optimal g-C3N4-CdS-NiS2 composite with the content of CdS 10%(mass)produced H2 at a rate of 50.9μmol·h−1,which is 25 times and 11 times of that of pure g-C3N4 nanotube and g-C3N4-CdS(NiS2)binary composite,respectively.Moreover,cyclic photocatalytic experiments demonstrated the high stability of g-C3N4-CdS-NiS2 composite.The improvement in the photocatalytic performance for H2 production can be mainly attributed to the formation of heterojunction between CdS,NiS2 and g-C3N4 nanotubes,which is beneficial to the separation of photogenerated electron-hole pairs.
作者 陈克龙 黄建花 CHEN Kelong;HUANG Jianhua(Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,Zhejiang,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第1期397-408,共12页 CIESC Journal
基金 国家自然科学基金项目(21574117)
关键词 制氢 催化 光化学 异质结 硫化镉 硫化镍 纳米管 可见光催化 g-C3N4 hydrogen production catalysis photochemistry heterojunction cadmium sulfide nickel sulfide nanotube visible light catalysis g-C3N4
  • 相关文献

参考文献5

二级参考文献70

  • 1Sheldon R A, Arends I W C E, Brink G J T, Dijksman A. Acc Chem Res, 2002, 35:774. 被引量:1
  • 2Mallat T, Baiker A. Chem Rev, 2004, 104:3037. 被引量:1
  • 3Ryland B L, Stahl S S. Angew Chem lntEd, 2014, 53:8824. 被引量:1
  • 4Wang L Y, Li J, Yang H, Lv Y, Gao S.J Or9 Chem, 2012, 77:790. 被引量:1
  • 5Hill C L. Advance in Oxygenated Process. JAI, London, 1998. 被引量:1
  • 6Mao J Y, Li N, Li H R, Hu X B.J Mol CatalA, 2006, 258:178. 被引量:1
  • 7Hu X B, Mao J Y, Sun Y, Chen H, Li H R. Catal Commun, 2009, 10: 1908. 被引量:1
  • 8Parmeggiani C, Cardona F. Green Chem, 2012, 14:547. 被引量:1
  • 9Dijksman A, Marino-Gonzilez A, Payeras A M, Arends I W C E, Sheldon R A.JAm Chem Soc, 2001, 123:6826. 被引量:1
  • 10Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K. J Am Chem Soc, 2000, 122:7144. 被引量:1

共引文献32

同被引文献122

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部