摘要
为汽车自动驾驶提供安全高效的自动驾驶行为决策,是汽车自动驾驶领域面临的挑战性问题之一.目前,随着自动驾驶行业的蓬勃发展,工业界与学术界提出了诸多自动驾驶行为决策方法,但由于汽车自动驾驶行为决策受环境不确定因素的影响,决策本身也要求实效性及高安全性,现有的行为决策方法难以完全支撑这些要素.针对以上问题,提出了一种基于贝叶斯网络构建RoboSim模型的自动驾驶行为决策方法.首先,基于领域本体分析自动驾驶场景元素之间的语义关系,并结合LSTM模型预测场景中动态实体的意图,进而为构建贝叶斯网络提供驾驶场景理解信息;然后,通过贝叶斯网络推理特定场景的自动驾驶行为决策,并使用RoboSim模型的状态迁移承载行为决策的动态执行过程,以减少贝叶斯网络推理的冗余操作,提高了决策生成的效率.RoboSim模型具有平台无关、能模拟仿真执行周期的特点,并支持多种形式化的验证技术.为确保行为决策的安全性,使用模型检测工具UPPAAL对RoboSim模型进行验证分析.最后,结合变道超车场景案例,进一步证实所提方法的可行性,为设计安全、高效的自动驾驶行为决策提供了一种可行的途径.
The realization of safe and efficient behavior decision-making has become a challenging issue for autonomous driving.As autonomous driving industries develop vigorously,industrial professionals and academic members have proposed many autonomous driving behavior decision-making approaches.However,due to the influence of environmental uncertainties as well as requirements for effectiveness and high security of the decision,existing approaches fail to take all these factors into account.Therefore,this study proposes an autonomous driving behavior decision-making approach with the RoboSim model based on the Bayesian network.First,based on domain ontology,the study analyzes the semantic relationship between elements in autonomous driving scenarios and predicts the intention of dynamic entities in scenarios by the LSTM model,so as to provide driving scenario information for establishing the Bayesian network.Next,the autonomous driving behavior decision-making in specific scenarios is inferred by the Bayesian network,and the state transition of the RoboSim model is employed to carry the dynamic execution of behavior decision-making and eliminate the redundant operation of the Bayesian network,thus improving the efficiency of decision-making.The RoboSim model is platform-independent.In addition,it can simulate the decision-making cycle and support validation technologies in different forms.To ensure the safety of the behavior decision-making,this study uses a model checking tool UPPAAL to verify and analyze the RoboSim model.Finally,based on lane change and overtaking cases,this study validates the feasibility of the proposed approach and provides a feasible way to achieve safe and efficient autonomous driving behavior decision-making.
作者
陈洁娜
张铭茁
杜德慧
李博
聂基辉
任婧瑶
CHEN Jie-Na;ZHANG Ming-Zhuo;DU De-Hui;LI Bo;NIE Ji-Hui;REN Jing-Yao(Software Engineering Institute,East China Normal University,Shanghai 200062,China;Shanghai Key Laboratory of Trustworthy ComputingEast China(Normal University),Shanghai 200062,China;MOE International Joint Lab of Trustworthy SoftwareEast China(Normal University),Shanghai 200062,China)
出处
《软件学报》
EI
CSCD
北大核心
2023年第8期3836-3852,共17页
Journal of Software
基金
国家自然科学基金(61972153)
科技部重点项目(2020AAA0107800)。