期刊文献+

基于百度指数的反腐败热词网络关注度研究

Research on Network Attention of Anti-corruption Hot Words Based on Baidu Index
下载PDF
导出
摘要 基于党的十八大以来出现的反腐败热词,结合百度指数搜索平台收录的反腐败词汇,探讨网民对于我国反腐败工作的关注度的发展趋势和特征,选取分别反映反腐败制度约束、惩治措施、基层治理、机制改革和立法完善五个方面的热词进行百度指数搜索,可以得出不同地域及人群属性的民众对于反腐败热词的关注特征及变化趋势。通过加强群众思想引领,丰富群众参与反腐败的宣传教育;完善群众参与机制,组织引导群众有序参与反腐倡廉建设;健全反馈落实和激励机制,保障群众参与的成效性和合法性来引导群众反腐败网络关注度,为全面推进反腐倡廉建设提供支持。 This paper,based on the anti-corruption hot words coined since the 18th National Congress of the Communist Party of China(CPC)and the anti-corruption hot words included in Baidu Index search platform,aims to explore the development trend and characteristics of netizens'attention to China's anti-corruption work.These hot words covering anti-corruption institutional constraints,punishment measures,grassroots governance,mechanism reform and legislative improvement are selected for Baidu Index search.The characteristics and trends of people's attention to anti-corruption hot words in different regions and groups are obtained.People's participation in anti-corruption publicity and education can be enriched by strengthening the ideological guidance;people can be guided for the construction of anti-corruption in an orderly manner by improving the participation mechanism.Moreover,the feedback implementation and incentive mechanism should be improved to ensure the effectiveness and legitimacy of people's participation and enhance their attention to the anti-corruption network,underpinning a full promotion of anti-corruption.
作者 商植桐 胡康倩 张红建 SHANG Zhitong;HU Kangqian;ZHANG Hongjian(Institute of Incorruption Education,Hebei University of Technology,Tianjin 300401,China;School of Marxism,Hebei University of Technology,Tianjin 300401,China)
出处 《乐山师范学院学报》 2023年第7期127-133,共7页 Journal of Leshan Normal University
基金 2020年度河北省社会科学基金青年项目“新时代我国网络意识形态安全治理现代化研究”(HB20MK015)。
关键词 反腐热词 网络关注度 群众反腐 实践路径 Anti-corruption Hot Words Network Attention The People Aanti-corrupfion the Path of Practice
  • 相关文献

参考文献4

二级参考文献26

  • 1赵黎明,贾永飞,钱伟荣.房地产预警系统研究[J].天津大学学报(社会科学版),1999,1(4):277-280. 被引量:54
  • 2姜向荣,司亚清,张少锋.景气指标的筛选方法及运用[J].统计与决策,2007,23(4):119-121. 被引量:14
  • 3Ginsberg ,et al. Detecting Influenza Epidemics Using Search En- gine Query Data[ J]. Nature, 2009,457 : 1012-1014. 被引量:1
  • 4Michael Ettredge,et al. Using Web-based Search Data to Predict Macroeconomic Statistics [ J ]. Communications for the ACM, 2005,8 ( 11 ) :87-92. 被引量:1
  • 5N Askitas, K F Zimmermann. Google Econometrics and Unem- ployment Forecasting[ I]. Applied Economics uarterly, 2009,55 (2) :107-120. 被引量:1
  • 6Hyunyoung Choi, H Varian. Predicting the Present with Google Trends[R]. Technical Report, Google Inc, 2009. 被引量:1
  • 7Tobias Preis, et al. Complex Dynamics of Our Economic Life on Different Scales: Insights from Search Engine Query Data [ J ]. Philosophical Transactions of the Royal Society, 2010 ( 368 ), 5707-5719. 被引量:1
  • 8Shared Goel, et al. Predicting Consumer Behavior with Web Se- arch[J]. PNAS. 2010,107(41 ) :17486-17490. 被引量:1
  • 9Hulth A, Rydevik G, Linde A. Web Queries as a Source for Syndromic Surveillance[ J]. PLOS ONE, 2009,4 ( 2 ) : 4378 - 4388. 被引量:1
  • 10袁庆玉,彭赓,刘颖,吕本富.基于网络关键词搜索数据的汽车销量预测研究[J].管理学家(学术版),2011(1):12-24. 被引量:22

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部