期刊文献+

LSTM模型在无袖带式异常血压预测中的应用 被引量:1

Application of LSTM model in the prediction of cuffless abnormal blood pressure
下载PDF
导出
摘要 研究了无袖带方式的血压测量。利用脉搏信号的时序数据,融合脉搏传导时间特征,构建了基于多生理参数的LSTM异常血压预测模型。实验结果表明,本文模型在准确率、召回率和F1值等评估指标上优于其他非时序模型,可以为多生理参数的连续血压测量提供数据支持。 In this paper,cuffless blood pressure measurement is investigated.Using the time series data of pulse signal and integrating the characteristics of pulse transmission time,the LSTM abnormal blood pressure prediction model based on multiple physiological parameters is constructed.The experimental results show that this model is better than other models in accuracy,recall and F1 value,and can provide support for continuous blood pressure measurement with multiple physiological parameters.
作者 宋伟泽 Song Weize(Department of Information,Women’s Hospital School of Medicine Zhejiang University,Hangzhou,Zhejiang 310006,China)
出处 《计算机时代》 2023年第7期70-73,共4页 Computer Era
关键词 无袖带式血压测量 多生理参数 脉搏波 长短期记忆网络(LSTM) cuffless blood pressure measurement multiple physiological parameters pulse wave long short-term memory(LSTM)
  • 相关文献

参考文献3

二级参考文献24

  • 1李艳文,姜印平,郑彤,闫宗魁.基于小波变换的脉搏波信号去噪[J].河北工业大学学报,2005,34(4):82-85. 被引量:5
  • 2叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 3张启蕊,董守斌,张凌.文本分类的性能评估指标[J].广西师范大学学报(自然科学版),2007,25(2):119-122. 被引量:7
  • 4SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep mod- els for semantic compositionality over a sentiment treebank [ C]// EMNLP 2013: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2013:1631-1642. 被引量:1
  • 5KOUTNIK J, GREFF K, GOMEZ F, et al. A clockwork RNN [ C]// ICML 2014: Proceedings of the 31st International Confer- ence on Machine Learning. [ S. 1. ] : International Machine Learning Society, 2014:1863 - 1871. 被引量:1
  • 6STOLLENGA M F, BYEON W, LIWICKI M, et al. Parallel multi- dimensional LSTM, with application to fast biomedical volumetric image segmentation [ C]//NIPS 2015: Proceedings of the Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2015. 被引量:1
  • 7LI J, LUONG M T, JURAFSKY D. A hierarchical neural autoen- coder for paragraphs and documents [ EB/OL]. [ 2015-11-09]. ht- tp://arxiv, org/pdf/1506. 01057v2. pdf. 被引量:1
  • 8SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learn- ing with neural networks [ C]// NIPS 2014: Proceedings of the Ad- vances in Neural Iifformation Processing Systems. Cambridge, MA: MIT Press, 2014:3104-3112. 被引量:1
  • 9GRAVES A. Generating sequences with recurrent neural networks [ EB/ OL]. [2015-08-24]. http://arxiv, org/pdf/1308.0850v5, pdf. 被引量:1
  • 10HOCHREITER S, SCHMIDHUBER J. Long short-term memory [ J]. Neural Computation, 1997, 9(8) : 1735 - 1780. 被引量:1

共引文献35

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部