期刊文献+

基于深度长短时记忆神经网络模型的心律失常检测算法 被引量:6

Cardiac arrhythmia detection algorithm based on deep long short-term memory neural network model
下载PDF
导出
摘要 针对传统基于形态特征的心电检测算法存在特征提取不准确和高复杂性等问题,提出了一种多层的长短时记忆(LSTM)神经网络结构。结合传统LSTM模型在时序数据处理上的优势,该模型增加了反向和深度计算,避免了人工提取波形特征,提高了网络的学习能力。通过给定心拍序列和分类标签进行监督学习,然后实现对未知心拍的心律失常检测。通过对MIT-BIH数据库中的心律失常数据集进行实验验证,模型的总体准确率为98.34%。相比支持向量机(SVM),该模型的准确率和F1值均有提高。 Aiming at the problems of inaccurate feature extraction and high complexity of traditional ElectroCardioGram(ECG)detection algorithms based on morphological features,an improved Long Short-Term Memory(LSTM)neural network was proposed.Based on the advantage of traditional LSTM model in time series data processing,the proposed model added reverse and depth calculations which avoids extraction of waveform features artificially and strengthens learning ability of the network.And supervised learning was performed in the model according to the given heart beat sequences and category labels,realizing the arrhythmia detection of unknown heart beats.The experimental results on the arrhythmia datasets in MIT-BIH database show that the overall accuracy of the proposed method reaches 98.34%.Compared with support vector machine,the accuracy and F1 value of the model are both improved.
作者 杨朔 蒲宝明 李相泽 王帅 常战国 YANG Shuo;PU Baoming;LI Xiangze;WANG Shuai;CHANG Zhanguo(School of Computer and Control Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang Liaoning 110168,China;School of Computer Science and Engineering,Northeastern University,Shenyang Liaoning 110819,China)
出处 《计算机应用》 CSCD 北大核心 2019年第3期930-934,共5页 journal of Computer Applications
关键词 心律失常 心电 长短时记忆神经网络 时序数据 支持向量机 cardiac arrhythmia ElectroCardioGram(ECG) Long Short-Term Memory(LSTM)neural network time series data Support Vector Machine(SVM)
  • 相关文献

参考文献3

二级参考文献23

  • 1崔华,宋国乡.基于小波阈值去噪方法的一种改进方案[J].现代电子技术,2005,28(1):8-10. 被引量:79
  • 2张启蕊,董守斌,张凌.文本分类的性能评估指标[J].广西师范大学学报(自然科学版),2007,25(2):119-122. 被引量:7
  • 3DONOHO DL, JOHNSTONE IM. Ideal spatial adaptation by wavelet shrinkage[ J]. Biometrika, 1994, 81 ( 3 ) : 425 - 455. 被引量:1
  • 4DONOHO DL. De-noising by soft thresholding[ J]. IEEE Transactions on Information Theory, 1995, 41(3):613 -627. 被引量:1
  • 5DONOHO DL, JOHNSTONE IM. Adapting to unknown Smoothness via wavelet shrinkage[ J]. Journal of the American Statistical Association, 1995, 90(12) : 1200 - 1224. 被引量:1
  • 6BRUCE AG, GAO HY. Waveshrink with firm shrinkage[J]. Statistica Sinica, 1997, 7(4): 855 -874. 被引量:1
  • 7POORNACHANDRA S, KUMARAVEL N. Hyper-trim shrinkage for denoising of ECG signal[J]. Digital Signal Processing, 2005, 15(3) : 317 -327. 被引量:1
  • 8MALLAT S.信号处理的小波导引[M].杨力华,译.北京:机械工业出版社,2004. 被引量:4
  • 9SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep mod- els for semantic compositionality over a sentiment treebank [ C]// EMNLP 2013: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2013:1631-1642. 被引量:1
  • 10KOUTNIK J, GREFF K, GOMEZ F, et al. A clockwork RNN [ C]// ICML 2014: Proceedings of the 31st International Confer- ence on Machine Learning. [ S. 1. ] : International Machine Learning Society, 2014:1863 - 1871. 被引量:1

共引文献69

同被引文献62

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部