摘要
考虑了定义在半无穷柱体上的多孔介质中Forchheimer流体,此模型在流体力学中有着广泛的应用.假设流体在柱体的侧面上满足Robin条件,利用能量估计的方法和微分不等式技术,推导了关于辅助函数的一个微分不等式,通过解此微分不等式证明了解随距离要么多项式增长要么指数式衰减.
The Forchheimer fluid in porous media defined on a semi-infinite cylinder is considered.This model is widely used in fluid mechanics.Assuming that the fuid satisfies the Robin condition on the side of the cylinder,a differential inequality about the auxiliary function is derived by using the method of energy estimation and the technique of differential inequality.By solving this differential inequality,it is proved that the solution grows polynomially or decays exponentially with distance.
作者
陈雪姣
李远飞
CHEN Xue-jiao;LI Yuan-fei(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《数学的实践与认识》
2023年第5期192-203,共12页
Mathematics in Practice and Theory
基金
广州华商学院导师制项目(2021HSDS16)
广东省普通高校重点项目(自然科学)(2019KZDXM042)。
关键词
Robin边界条件
微分不等式技术
二择一
robin boundary conditions
differential inequality technique
alternative.