期刊文献+

一类非齐次粘弹性变密度方程解的能量衰减率

Energy decay rate for a class of inhomogeneous viscoelastic equations with variable density
下载PDF
导出
摘要 在Ω×(0,∞)上考虑一类非齐次粘弹性变密度方程|u_(t)|^(ρ)u_(tt)+Δ^(2)u-M∫_(Ω)|▽u|^(2)d xΔu-μΔu tt-∫^(t)0g(t-s)Δ^(2)u(s)d s=f(u).在记忆核和源项的一般假设下,通过建立微分不等式,证明了其初边值问题解的能量衰减率. A class of inhomogeneous viscoelastic variable density equations is considered in this paper|u_(t)|^(ρ)u_(tt)+Δ^(2)u-M∫_(Ω)|▽u|^(2)d xΔu-μΔu tt-∫^(t)0g(t-s)Δ^(2)u(s)d s=f(u).inΩ×(0,∞).Under the general assumption of memory kernel and source term,the energy decay rate of the initial boundary value problem is proved by establishing the differential inequality.
作者 孔令硕 李傅山 KONG Lingshuo;LI Fushan(School of Mathematical Sciences,Qufu Normal University,273165,Qufu,Shandong,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2023年第2期51-61,共11页 Journal of Qufu Normal University(Natural Science)
基金 山东省自然科学基金(ZR2019MA067).
关键词 记忆核 变密度 粘弹性方程 能量衰减 memory kernel variable density viscoelastic equation energy decay
  • 相关文献

二级参考文献29

  • 1Lasiecka, I.: Uniform stabilizability of a full von Kaman system with nonlinear boundary feedback. SIAM J. Control Optim., 36, 1376-1422 (1998). 被引量:1
  • 2Lasiecka, I.: Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Appl. Anal., 68, 121-145 (1998). 被引量:1
  • 3Lasiecka, I.: Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation. Commun. Partial Differential Equations, 24, 1801-1847 (1999). 被引量:1
  • 4Munoz, J. E., Menzala, G. P.: Uniform rates of decay for full von Karman systems of dynamic viscoelasticity with memory. Asymptotic Anal., 27, 335-357 (2001). 被引量:1
  • 5Puel, J., Tucsnak, M.: Boundary stabilization for the von Kaman equations. SIAM J. Control., 33, 255-273 (1996). 被引量:1
  • 6Rivera, J. E., Menzala, G. P.: Decay rates of solutions to a von Kaman system for viscoelastic plates with memory. Quart. Appl. Math., LⅦ, 181-200 (1999). 被引量:1
  • 7Rivera, J. E., Menzala, G. P.: Uniform rates of decay for full von Kaman systems of dynamic viscoelasticity with memory. Asymptotic Analysis, 27, 335 357 (2001). 被引量:1
  • 8Iosifescu, O. A.: Comportement de la solution des modules non lineaires bidimensionnels de coque faiblement courbee de W. T. Koiter et de Marguerre-von Karman lorsque la coque devient une plaque. C. R. Acad. Sci. Paris, Ser. Ⅰ, 321, 1389-1394 (1995). 被引量:1
  • 9Rao, B. PI: Marguerre-von Karman equations and membrane model. Nonlinear Anal., Theory Methods Appl., 24, 1131-1140 (1995). 被引量:1
  • 10Menzala, G. P., Zuazua, E.: Timoshenko's plate equation as a singular limit of the dynamical von Karman System. J. Math. Pures Appl., 79, 73-94 (2000). 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部