期刊文献+

连续昂贵多目标优化问题综述 被引量:2

Survey of Continuous Expensive Multiobjective Optimization Problems
下载PDF
导出
摘要 许多实际工程优化问题通常需要同时优化多个相互冲突的目标,并且目标函数的计算主要依赖十分耗时的仿真实验,此类问题一般可称为昂贵多目标优化问题。代理辅助进化算法通过使用机器学习方法建立代理模型,并辅助算法进行评估,因而使代理辅助进化算法成为解决此类问题的热门方法。根据问题规模大小将相关算法划分成两类,描述每类问题特点,分类梳理相关算法,并说明每个算法的优缺点,以便人们能直观地了解连续昂贵多目标优化问题研究进展,更好地开展后续研究工作。 Many practical engineering optimization problems usually involve optimizing multiple conflicting objectives at the same time,and the calculation of the objective function mainly relies on time-consuming simulation experiments,such problems can generally be called expensive multiobjective optimization problems.Surrogate-assisted evolutionary algorithms use machine learning methods to build surrogate models and assist algorithms for evaluation,which makes surrogate-assisted evolutionary algorithms a popular method to solve such problems.According to the scale of the problem,the relevant algorithms are divided into two categories,the characteristics of each type of problem are described,the related algorithms are classified and sorted out,and the advantages and disadvantages of each algorithm are explained,so that people can intuitively understand the research progress of continuous expensive multiobjective optimization problems and better carry out follow-up research work.
作者 张峰 陈新中 ZHANG Feng;CHEN Xin-zhong(The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China)
出处 《软件导刊》 2023年第5期248-252,共5页 Software Guide
关键词 多目标优化 昂贵多目标优化 代理辅助进化算法 代理模型 机器学习 multiobjective optimization expensive multiobjective optimization surrogate-assisted evolutionary algorithm surrogate model machine learning
  • 相关文献

参考文献5

二级参考文献20

共引文献34

同被引文献47

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部