期刊文献+

基于ELECTRE-Ⅲ法的高维多目标调和进化算法

Many-objective Concordance Evolutionary Algorithm Based on Modified ELECTRE-Ⅲ Method
下载PDF
导出
摘要 针对基于Pareto支配的低维多目标进化算法在求解3个以上目标的高维多目标时出现收敛压力不足等问题,将调和模型中面向排序的ELECTRE-Ⅲ引入高维多目标进化方法中,提出一种新的锦标赛选择算子。该算子包含两层操作,分别是快速非支配分层操作和同一非劣层中的赋值级别高于关系排序操作。将这种赋值级别高于关系构造的ELECRE-Ⅲ排序法嵌入NSGA-Ⅱ中并应用于高维多目标进化个体的优劣排序。对典型高维测试集WFG函数进行仿真实验,验证该高维多目标调和进化算法的有效性。 Aiming at the insufficient convergence pressure of low-dimensional and multi-objective evolutionary algorithms based on Pareto domination in solving three or more high-dimensional and multi-objective evolutionary algorithms,we introduce the rank⁃ing-oriented ELECTRE-Ⅲ in the harmonic model into the high-dimensional and multi-objective evolutionary methods,and propose a new tournament selection operator.The operator consists of two layers of operations.The assignment level of fast non-dominated hier⁃archical operation and the same non-inferior layer is higher than that of relational sorting operation.The ELECRE-Ⅲ ranking method with higher assignment level than relation construction is embedded in NSGA-Ⅱ and applied to the ranking of evolutionary individuals in high-dimensional multi-objective problems.The simulation results of typical high-dimensional test set WFG function verify the ef⁃fectiveness of the proposed harmonic evolutionary algorithm.
作者 易高明 耿秀荣 YI Gao-ming;GENG Xiu-rong(School of Scinence,Guilin University of Aerospace Technology,Guiling 541000,China)
出处 《软件导刊》 2020年第8期89-94,共6页 Software Guide
关键词 ELECTREⅢ方法 多目标进化算法 高维多目标 锦标赛选择 赋值级别高于关系 ELECTREⅢmethod multi-objective evolution algorithm many-objectives competition selection valued outranking re⁃lation
  • 相关文献

参考文献11

二级参考文献76

  • 1王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 2崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文)[J].软件学报,2005,16(5):761-770. 被引量:23
  • 3陈杰,陈熙霖,高文.基于遗传算法重采样的人脸样本扩张[J].软件学报,2005,16(11):1894-1901. 被引量:8
  • 4雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 5ZhangQingfu,Li Hui.MOEA/D:A multi-objective evolutionary algorithm based on decomposition[J].IEEE Trans on Evolutionary Computation,2007,11 (6):712-731. 被引量:1
  • 6Ikeda K,Kita H,Kobayashi S.Failure of Pareto-based MOEAs:Does non-dominated really mean near to optimal[A].Proc of 2001 IEEE Congress on Evolutionary Computation[C].Seoul:IEEE Service Center,2001.957-962. 被引量:1
  • 7Deb K,Saxena D K.On finding Pareto-Optimal Solutions Tnrongh Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems[R].Kanpur:Indian Institute of Technology,2005. 被引量:1
  • 8Jaimes A L,Coello C A C,Chakraborty D.Objective reduction using a feature selection technique[A].Proc of the 10th Annual Conf on Genetic and Evolutionary Computation[C].New York:ACM,2008.673-680. 被引量:1
  • 9M.Farina,P.Amato.A fuzzy definition of "optimality" for many-criteria optimization problems[J].IEEE Transactions on Systems,Man,and Cybernetics,2004,34(3):315-326. 被引量:1
  • 10Hemandez-Diaz A,Santana-Quintero L,Coello-Coello C,et al.Pareto-adaptive ε-dominance[J].Evolutionary Computation,2007,15(4):493-517. 被引量:1

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部