摘要
无论是对人脸检测还是人脸识别来说,训练或测试一个分类器都要进行数据的收集,目前所有基于统计学习的方法都存在这个问题.提出了一种针对已有的人脸样本通过采用遗传算法进行重采样来扩张样本的算法.其基本思想是,基于人脸样本由有限的部件构成,而且遗传算法可以用于模拟自然界中的遗传过程.这种模拟可以涵盖人脸的一些变化,比如不同的光照、姿态、饰物、图片质量等.为了证明该算法所生成样本的推广能力,将这些生成的样本用于训练一个基于AdaBoost的人脸检测器,并且将它在MIT+CMU的正面人脸测试库上进行了测试.实验结果表明,通过这种方法来收集数据可以有效地提高数据收集的速度和效率.
Data collection for both training and testing a classifier is a tedious but essential step towards face detection and recognition. All of the statistical methods suffer from this problem. In this paper, a genetic algorithm (GA) based method to swell face database through re-sampling from existing faces is presented. The basic idea is that a face is composed of a limited components set, and the GA can simulate the procedure of heredity. This simulation can also cover the variations of faces in different lighting conditions, poses, accessories, and quality conditions. To verify the generalization capability of the proposed method, the expanded database is used to train an AdaBoost-based face detector and test it on the MIT+CMU frontal face test set. The experimental results show that the data collection can be speeded up efficiently by the proposed methods.
出处
《软件学报》
EI
CSCD
北大核心
2005年第11期1894-1901,共8页
Journal of Software
基金
国家自然科学基金
国家高技术研究发展计划(863))
中国科学院"百人计划"
银晨智能识别科技有限公司资助~~