期刊文献+

采用虚拟训练样本的二次判别分析方法 被引量:16

Quadratic Discriminant Analysis Method Based on Virtual Training Samples
下载PDF
导出
摘要 小样本问题会造成各类协方差矩阵的奇异性和不稳定性.本文采用对训练样本进行扰动的方法来生成虚拟训练样本,利用这些虚拟训练样奉克服了各类协方差矩阵的奇异性问题,从而可以直接使用二次判别分析(Quadratic discriminant analysis,QDA)方法.本文方法克服了正则化判别分析(Regularized discriminant analysis,RDA)需要进行参数优化的问题.实验结果表明,QDA的模式识别率优于参数最优化时RDA算法的识别率. The "small sample size" (SSS) problem will cause the singularity and instability of the per class covariance matrices. This paper uses perturbing training samples to produce virtual training samples to overcome singularity of the per class covariance matrices. As a consequence, the classifier based on quadratic discriminant analysis (QDA) can be used directly in classification. The proposed QDA overcomes the problem that the parameters of regularized discriminant analysis (RDA) needs optimizing. Our experiments show that the QDA's recognition accuracy is superior to that of RDA if its parameters are optimized.
出处 《自动化学报》 EI CSCD 北大核心 2008年第4期400-407,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60472060)资助
关键词 小样本问题 二次判别分析 虚拟训练样本 扰动方法 分类器 人脸识别 Small sample size problem, quadratic discriminant analysis, virtual training samples, perturbation method classifier, face recognition
  • 相关文献

参考文献16

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals Eugen, 1936, 7:178-188 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intellgence, 1997, 19(7): 711-720 被引量:1
  • 3Liu K, Yang J Y. An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method. International Journal of Pattern Recognition and Artificial Intelligence, 1992,6(5): 817-829 被引量:1
  • 4Friedman J H. Reguralized discriminant analysis. Journal of the American Statistica Association, 1989, 84(405): 165 -- 175 被引量:1
  • 5Thomaz C E, Gillies D F, Feitosa R Q. A new covariance estimate for Bayesian classifiers in biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(2): 214-223 被引量:1
  • 6Marcel S. A symmetric transformation for LDA-based face verification. In: Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition. New York, USA: IEEE, 2004, 207-212 被引量:1
  • 7Wen J W, Zhao J L, Luo S W, Huang H. Face recognition method based on virtual sample. In: Proceedings of the National Science Foundation under Contract. 2001. 557-562 被引量:1
  • 8Liu Q S, Lu H Q, Ma S D. Improving kernel Fisher discriminant analysis for face recognition. IEEE Transactions on Circuits and System for Video Technology, 2004, 14(1): 42-49 被引量:1
  • 9王卫东,郑宇杰,杨静宇.采用虚拟训练样本优化正则化判别分析[J].计算机辅助设计与图形学学报,2006,18(9):1327-1331. 被引量:17
  • 10陈杰,陈熙霖,高文.基于遗传算法重采样的人脸样本扩张[J].软件学报,2005,16(11):1894-1901. 被引量:8

二级参考文献32

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2武宇文,刘宏,查红彬.基于特征分组加权聚类的表情识别[J].计算机辅助设计与图形学学报,2005,17(11):2394-2401. 被引量:11
  • 3Yang MH, Kriegman D, Ahuja N. Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence,2002,24(1):34-58. 被引量:1
  • 4Miao J, Yin BC, Chen XC. A hierarchical multiscale and multiangle system for human face detection in a complex backgroun dusing gravity-center template. Pattern Recognition, 1999,32(7):1237-1248. 被引量:1
  • 5Sung KK, Poggio T. Example-Based learning for view-based human face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(1):39-51. 被引量:1
  • 6Rowley HA, Baluja s, Kanade T. Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine intelligence,1998.20(1):23-38. 被引量:1
  • 7Schneiderman H, Kanade T. A statistical method for 3D object detection applied to faces. In: Kimia B, Amini A, Metaxas D, eds.Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Cambridge: IEEE Computer Society, 2000. 746-751. 被引量:1
  • 8Yang MH, Roth D, Ahuja N. A SNoW-based face detector. In: Solla SA, Leen TK, Miiller KR, eds. Advances in Neural Information Processing Systems 12. Cambridge: MIT Press, 2000. 855-861. 被引量:1
  • 9Liu CJ. A Bayesian discriminating features method for face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence,2003,25(6):725-740. 被引量:1
  • 10Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Kasturi R, Medioni G, eds. Proc. of the IEEE Computer Vision and Pattern Recognition. Cambridge: IEEE Computer Society, 2001.511-518. 被引量:1

共引文献24

同被引文献164

引证文献16

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部