期刊文献+

多目标混沌进化算法 被引量:20

Multi-Objective Chaotic Evolutionary Algorithm
下载PDF
导出
摘要 设计了多目标混沌进化算法(MCEA),在每一代遗传操作和外部档案调整完成之后,该算法从外部档案中随机选择部分个体,对这些个体的拷贝进行混沌搜索,以产生更多非劣解.将强度Pareto进化算法(SPEA)和SPEA2分别与基于Logistic映射的混沌搜索结合而产生的MCEAs应用于一些复杂多目标优化问题,计算结果表明,混沌的加入,明显改善了多目标进化算法(MOEA)各方面的性能. Multi-objective chaotic evolutionary algorithm (MCEA) is designed. In each generation of MCEA, after the population finishes all genetic operations and external archive maintenance is done, chaotic search is performed on the copy of several individuals randomly chosen from the external archive to obtain new non-dominated solutions. MCEAs respectively merging strength Pareto evolutionary algorithm ( SPEA), SPEA2 with chaotic search based on Logistic map are applied to some complex multi-objective optimization problems. The computational results demonstrate that the comprehensive performance of multi-objective evolutionary algorithm (MOEA) is improved as a consequence of the inclusion of chaos.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第6期1142-1145,共4页 Acta Electronica Sinica
基金 国家重点基础研究发展计划(973计划)(No.2005CB724205) 国家自然科学基金(No.60074011)
关键词 混沌 PARETO最优 多目标进化算法 chaos pareto optimal multi-objective evolutionary algorithm
  • 相关文献

参考文献15

  • 1Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithm[ A].Proc 1st International Conference on Genetic Algorithm[ C ].Mahwah,NJ,USA:Lawrence Erlbaum Associates,1985.93-100. 被引量:1
  • 2Knowles J D,Corne D W.Approximating the non-dominated front using the pareto archive evolutionary strategy[J].Evolutionary Computation,2000,8 (2):149-172. 被引量:1
  • 3Knowles J D,Corne D W.M-PAES.A multi-objective memetic algorithm[ A ].Proc 2000 Congress on Evolutionary Computation[ C ].Piscataway,NJ:IEEE Press,2000.325 -332. 被引量:1
  • 4Zitzler E,Thiele L.Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach[ J ].IEEE Transaction on Evolutionary Computation,1999,3 (4):257 -271. 被引量:1
  • 5Zitzler E,Laumanns M.Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm[ R ].(TIK-Rep 103) Lausanne,Switzerland:Swiss Federal Institute of Technology,2001.1 -21. 被引量:1
  • 6Deb K,Pratap A,Agarwal S.Meyarivan T.A fast and elitist multi-objective genetic algorithms:NSGA-Ⅱ[ J ].IEEE Transactions on Evolutionary Computation.2002,6 (2):182-197. 被引量:1
  • 7雷德明.利用混沌搜索全局最优解的一种混合遗传算法[J].系统工程与电子技术,1999,21(12):81-82. 被引量:41
  • 8Determan J,Foster J A.Using chaos in genetic algorithm[ A ].Proceedings of the 1999 congress on Evolutionary Computation[ C].Piscataway,NJ:IEEE Press,1999.2094 -2101. 被引量:1
  • 9Caponetto R,Fortuna L,Fazzino S,et al.Chaotic sequence to improve the performance of evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation.2003,7(3):289 -304. 被引量:1
  • 10Juan L,Zixing C,Jianqin L.Premature convergence in genetic algorithm:analysis and prevention based on chaos operator[ A].Proc 3rd World Congress Intelligent Control Automation[ C ].USA:IEEE Press,2,2000.495-499. 被引量:1

二级参考文献9

共引文献654

同被引文献224

引证文献20

二级引证文献291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部