期刊文献+

基于密度权重的优化差分隐私K-medoids聚类算法 被引量:1

Optimal differential privacy K-medoids clustering algorithm based on density weights
下载PDF
导出
摘要 K-medoids算法作为数据挖掘中重要的一种聚类算法,与差分隐私保护的结合有助于信息数据的安全,原有的基于差分隐私保护的K-medoids聚类算法在初始中心点的选择上仍然具有盲目性和随机性,在一定程度上降低了聚类效果。本文针对这一问题提出一种基于密度权重的优化差分隐私K-medoids(DWDPK-medoids)聚类算法,通过引入数据密度权重知识,确定算法的初始中心点和聚类数,以提高聚类效果和稳定性。安全性分析表明,算法满足ε-差分隐私保护;通过对UCI真实数据集的仿真实验表明,相同隐私预算下该算法比DPK-medoids具有更好的聚类效果和稳定性。 As an important kind of clustering algorithm in data mining,the combination of K-medoids algorithm and differential privacy protection helps the security of information data.However,the original K-medoids clustering algorithm based on differential privacy protection is still blind and random in the selection of initial centroids,which reduces the clustering effect to some extent.To address this problem,an optimal differential privacy K-medoids(DWDPK-medoids)clustering algorithm based on density weights is proposed to determine the initial centroids and the number of clusters of the algorithm by introducing the knowledge of data density weights to improve the clustering effect and stability.The security analysis shows that the algorithm satisfies-differential privacy protection;the simulation experimental results on real UCI datasets show that the algorithm has better clustering effect and stability than DPK-medoids under the same privacy budget.
作者 王圣节 巫朝霞 WANG Shengjie;WU Zhaoxia(College of Statistics and Data Science,Xinjiang University of Finance and Economics,Urumqi 830012,China)
出处 《智能计算机与应用》 2023年第5期126-130,139,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(61941205)。
关键词 数据挖掘 差分隐私 K-medoids算法 密度权重 data mining differential privacy K-medoids algorithm density weighting
  • 相关文献

参考文献7

二级参考文献55

  • 1Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005. 被引量:1
  • 2Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006. 被引量:1
  • 3Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008. 被引量:1
  • 4Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009. 被引量:1
  • 5Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010. 被引量:1
  • 6Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95. 被引量:1
  • 7Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011. 被引量:1
  • 8Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450. 被引量:1
  • 9Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570. 被引量:1
  • 10Lindell Y,Pinkas B.Privacy preserving data mining[C] // Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology.Santa Barbara,California,August 2000:36-54. 被引量:1

共引文献93

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部