期刊文献+

基于属性分类的用电大数据隐私保护方法 被引量:8

Power Consumption Big Data Privacy Protection Method Based on Attribute Classification
下载PDF
导出
摘要 针对用电大数据环境下,非交互式差分隐私模型无法提供准确查询结果及计算开销较大的问题,提出一种基于最大信息系数与数据匿名化的差分隐私数据发布方法。从原始数据集中选出部分隐私属性作为特征集,利用最大信息系数选出与此特征集相关性高的数据作为隐私数据集,使用协同隐私保护算法对隐私数据集进行保护,发布满足差分隐私保护的用电大数据集。理论分析与实验结果表明,所提出的方法在提高大数据隐私保护处理效率同时,有效分化查询函数敏感性,提高发布数据可用性。 In the environment of power consumption big data,non-interactive differential privacy can not provide accurate query results and high computational overhead,a differential privacy data publishing model based on maximum information coefficient and data anonymization is proposed.Firstly,a small number of privacy attributes with high correlation are selected from original data set as feature set by using the maximum information coefficient.Then,the proposed cooperative privacy protection algorithm is applied to the privacy data set to achieve anonymity.Finally,the collaborative privacy protection algorithm is used to protect the privacy data set,and the power consumption big data set meeting the differential privacy protection is released.The theoretical analysis and experimental results show that the proposed method not only improves the efficiency of large data privacy protection processing,but also effectively differentiates the sensitivity of query functions and improves the utility of published data.
作者 梁晓兵 许斌 翟峰 沈博 LIANG Xiaobing;XU Bin;ZHAI Feng;SHEN Bo(China Electric Power Research Institute,Beijing 100192,China;State Key Laboratory of Information Security,Institute of Information Engineering,CAS,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第5期93-100,共8页 Computer Engineering and Applications
基金 国家电网公司科技项目(No.JL71-18-022)
关键词 差分隐私 最大信息系数 数据匿名化 数据发布 differential privacy maximum information coefficient data anonymization data publishing
  • 相关文献

参考文献3

二级参考文献39

  • 1吴溥峰,张玉清.数据库安全综述[J].计算机工程,2006,32(12):85-88. 被引量:96
  • 2Kantarcioglu M,Jin Jiasun,Clifton C.When do data mining results violate privacy?[C]//Proc of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining.New York:ACM,2004:599-604. 被引量:1
  • 3Agrawal R,Srikant R.Privacy-preserving data mining[C]//Proc of the 2000 ACM SIGMOD Conf on Management of Data.New York:ACM,2000:439-450. 被引量:1
  • 4Oliveira S R M,Zaane O R.Privacy preservation when sharing data for clustering[C]//Proc of the Int Workshop on Secure Data Management in a Connected World.Berlin:Springer,2004:67-82. 被引量:1
  • 5Parameswaran R,Blough D M.Privacy preserving data obfuscation for inherently clustered data[J].International Journal of Information and Computer Security,2008,2(1):1744-1765. 被引量:1
  • 6Mukherjee S,Chen Zhiyuan,Gangopadhyay A.A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms[J].The International Journal on Very Large Data Bases,2006,15(4):293-315. 被引量:1
  • 7Aggarwal G,Feder T,Kenthapadi K,et al.Approximation algorithms for k-anonymity[C]//Proc of ACM SIGMOD Int Conf on Management of Data.New York:ACM,2007. 被引量:1
  • 8Du Yang,Xia Tian,Tao Yufei,et al.On multidimensional k-anonymity with local recoding generalization[C]//Proc of IEEE the 23rd Int Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society,2007. 被引量:1
  • 9Rijsbergen C J van.Information Retrieval (2nd edition)[M].London:Butterworths,1979. 被引量:1
  • 10Ester M,Kriegel H P,Sander J,et al.A density based algorithm of discovering clusters in large spatial databases with noise[C]//Proc of the 2nd Int Conf on Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI,1996:226-231. 被引量:1

共引文献38

同被引文献92

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部