期刊文献+

基于差分隐私保护的谱聚类算法 被引量:4

Spectral clustering algorithm based on differential privacy protection
下载PDF
导出
摘要 针对传统的聚类算法存在隐私泄露的风险,提出一种基于差分隐私保护的谱聚类算法。该算法基于差分隐私模型,利用累计分布函数生成满足拉普拉斯分布的随机噪声,将该噪声添加到经过谱聚类算法计算的样本相似度的函数中,干扰样本个体之间的权重值,实现样本个体间的信息隐藏以达到隐私保护的目的。通过UCI数据集上的仿真实验,表明该算法能够在一定的信息损失度范围内实现有效的数据聚类,也可以对聚类数据进行保护。 Aiming at the problem of privacy leakage in the application of traditional clustering algorithm,a spectral clustering algorithm based on differential privacy protection was proposed.Based on the differential privacy model,the cumulative distribution function was used to generate random noise that satisfies Laplasse distribution.Then the noise was added to the sample similarity function calculated by the spectral clustering algorithm,which disturbed the weight values between the individual samples and realized information hiding between sample individuals for privacy protection.Experimental results of UCI dataset verify that the proposed algorithm can achieve effective data clustering within a certain degree of information loss,and can also protect clustered data.
作者 郑孝遥 陈冬梅 刘雨晴 尤浩 汪祥舜 孙丽萍 ZHENG Xiaoyao;CHEN Dongmei;LIU Yuqing;YOU Hao;WANG Xiangshun;SUN Liping(School Computer and Information,Anhui Normal University,Wuhu Anhui 241002,China;Anhui Provincial Key Laboratory of Network and Information Security(Anhui Normal University),Wuhu Anhui 241002,China)
出处 《计算机应用》 CSCD 北大核心 2018年第10期2918-2922,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61772034 61602009) 安徽省自然科学基金资助项目(1808085MF172)~~
关键词 差分隐私 谱聚类 敏感数据 隐私泄露 differential privacy spectral clustering sensitive data privacy leakage
  • 相关文献

参考文献6

二级参考文献52

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005. 被引量:1
  • 3Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006. 被引量:1
  • 4Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008. 被引量:1
  • 5Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009. 被引量:1
  • 6Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010. 被引量:1
  • 7Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95. 被引量:1
  • 8Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011. 被引量:1
  • 9Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450. 被引量:1
  • 10Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570. 被引量:1

共引文献328

同被引文献27

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部