期刊文献+

基于SAU-NetDCGAN的天气云图生成方法 被引量:1

Weather cloud image generation method based on SAU-NetDCGAN
下载PDF
导出
摘要 天文台天气监测系统对天气云图存在巨大需求。为解决传统的生成对抗网络在扩充天气云图数据集时模型不稳定以及图像特征丢失等问题,提出一种基于SAU-NetDCGAN的双层嵌入式对抗网络天气云图生成方法,该方法由两层网络相互嵌套组成。首先,第一层嵌入式网络是将U型网络添加到生成对抗式网络的生成器中,该网络作为基础架构,利用编码器与解码器之间的跳跃连接增强图像的边缘特征恢复能力;接着,第二层嵌入式网络是将简化参数注意力机制(simplify-attention, SA)添加到U型网络中,该注意力机制通过简化参数降低了模型复杂度,有效地改善了图像暗部特征丢失的问题;最后设计了一种新的权重计算方式,加强了各特征之间的联系,增加了对图像细节纹理特征的提取。实验结果表明,该方法生成的图像在清晰度、色彩饱和度上与传统的生成对抗网络相比图像质量更好,在峰值信噪比、结构相似性的评价指标下分别提高了27.06 dB和0.606 5。 There is a huge demand for weather cloud images in the observatory’s weather monitoring system.In order to solve the problems of model instability and loss of image features when the conventional generative adversarial network expands the dataset of the weather cloud images,this paper proposed a double-layer embedded adversarial image generation method based on SAU-NetDCGAN.This method consisted of two layers of networks which were nested within each other.Firstly,by the first layer of embedded network,it added the U-shaped network to the generator of the generative adversarial network.This network acted as the basic architecture and enhanced the feature recovery capability of the image by using the jump connection between the encoder and the decoder.Secondly,by the second layer of embedded network,it added SA to the U-shaped network.This attention mechanism reduced the complexity of the model by simplifying the parameters,improved effectively the feature loss in the dark part of the image.Finally,it developed a new weight calculation method to strengthen the connection between each features and improved the extraction of detail texture features from the images.The experimental results show that the quality of the images generated by this method is better than that of the conventional generative adversarial network in terms of sharpness and saturation.The evaluation indicators PSNR and SSIM have increased by 27.06 dB and 0.6065 respectively.
作者 杨鹏熙 侯进 游玺 任东升 杜茂生 Yang Pengxi;Hou Jin;You Xi;Ren Dongsheng;Du Maosheng(IPSOM Lab,School of Information Science&Technology,Southwest Jiaotong University,Chengdu 611756,China;National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Southwest Jiaotong University,Chengdu 611756,China;Tangshan Institute,Southwest Jiaotong University,Tangshan Hebei 063000,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第5期1577-1582,共6页 Application Research of Computers
基金 国家重点研发计划资助项目(2020YFB1711902) 四川省科技计划资助项目(2020SYSY0016)。
关键词 深度学习 图像生成 生成式对抗网络 U-Net 注意力机制 deep learning image generation generative adversarial network(GAN) U-Net attention mechanism
  • 相关文献

参考文献10

二级参考文献63

  • 1蔡毅,胡旭.短波红外成像技术及其军事应用[J].红外与激光工程,2006,35(6):643-647. 被引量:40
  • 2章文星,吕达仁,常有礼.地基热红外亮温遥感云底高度可行性的模拟研究[J].地球物理学报,2007,50(2):354-363. 被引量:31
  • 3李俊,曾庆存.有云时大气红外遥感及其反演问题──I.理论研究[J].大气科学,1997,21(3):341-347. 被引量:7
  • 4Clothiaux E !E, Miller M A, Albrecht B A, et al. 1995. An evaluation of a 94-GHz radar for remote sensing of cloud properties [J]. J. Atmos. Oceanic Teehnol., 12 (2): 201-229. 被引量:1
  • 5Di Rosa D, Notamicola C, Posa F. 2009. Cross-comparison and validation of modis aqua cloud mask by using cloudsat and calipso datasets. Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, 3: 1019-1022. 被引量:1
  • 6Dong X Q, Mace G G, Minnis P, et al. 2002. Comparison of stratus cloud properties deduced from surface, goes, and aircraft data during the March 2000 arm cloud lop [J]. J. Atmos. Sci., 59 (23): 3265-3284. 被引量:1
  • 7Dong X Q, Minnis P, Xi B K, et al. 2008. Comparison of ceres-modis stratus cloud properties with ground-based measurements at the doe ann Southern Great Plains site [J]. J. Geophys. Res., 113: D03204, doi: 10.1029/2007JD008438. 被引量:1
  • 8Houghton J T, Ding Y, Ciggs D J, et al. 2001. Climate Change 2001: The Scientific Basis [M]. Published for the IntergovLmental Panel on Climate Change, Cambridge University Press. 被引量:1
  • 9Im E, Durden S L, Tanelli S. 2006. CloudSat: The cloud profiling radar mission [C]. CIE International Conference Proceedings on Radar, Shanghai, China, October 16-19, 2006. 被引量:1
  • 10Pavolonis M J, Heidinger A K. 2004. Daytime cloud overlap detection from avhrr and viirs [J]. J. Appl. Meteor., 43 (5): 762-778. 被引量:1

共引文献77

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部