期刊文献+

注意力机制的SAR图像车辆目标检测网络 被引量:1

Vehicle-target detection network for SAR images based on the attention mechanism
下载PDF
导出
摘要 在SAR图像车辆目标检测过程中,车辆轮廓定位不仅能够提供车辆位置信息,而且还能够为车辆状态分析提供依据,是SAR图像理解的关键步骤。但SAR图像中乘性斑点噪声会对轮廓定位造成干扰,增加车辆目标检测的难度。针对这一问题,提出了一种注意力机制的SAR图像像素级车辆目标检测网络。该网络由目标筛选、目标定位和轮廓细化三个模块构成。目标筛选在一个轻量级的特征提取网络中采用通道注意力和自注意力机制,在抑制噪声影响的同时对包含目标图像进行快速筛选,并提供稳定的定位热力图;目标定位利用掩码交叉注意力机制根据定位热力图优化粗尺度特征细化目标定位,并融入细尺度信息改善目标轮廓细节;轮廓细化通过轮廓点筛选消除上采样及噪声带来的轮廓不确定点获取准确的轮廓像素点置信度。对MSTAR数据集进行车辆像素级标注,建立SAR图像车辆数据集及大场景图像数据集用于网络测试。实验结果表明,该网络具有良好的像素级检测性能,可实现大场景SAR图像中车辆目标的快速精确检测。 In the processing of vehicle-target detection in synthetic aperture radar(SAR)images,the contours of vehicles not only provide their position but also represent their condition,which is a key to SAR image understanding.But the multiplicative speckle noise in SAR images interferes with the border positioning of vehicles,resulting in difficulties for vehicle-target detection.To solve this problem,the present paper proposes an attention-mechanism-based neural network for pixel level vehicle detection,which consists of a target filtering module,a target locating module and a contour refining module.The target filtering module contains a lightweight feature extraction network with a channel-attention and self-attention mechanism to enhance feature expression.This module can decrease the effect of the speckle on features to select images containing the target quickly and precisely,and provide the output stable location heat map for the next module.The target locating module uses the foreground-background cross-attention mechanism to refine the coarse-scale features in accordance with the location heat map and refine the target location.Furthermore,the module adopts the fine-scale information to improve the details of the target contour.The contour refining module eliminates the contour uncertain points caused by upsampling and speckle noise to obtain accurate contour pixel confidence.For testing this network,a target image dataset and a large-scene image dataset are built with the pixel-level vehicle annotation of the dataset labeled by ourselves.The result of testing indicates that the network has a good pixel-level detection performance and can detect vehicle targets in large SAR images rapidly and accurately.
作者 张强 杨欣朋 赵世祥 卫栋栋 韩臻 ZHANG Qiang;YANG Xinpeng;ZHAO Shixiang;WEI Dongdong;HAN Zhen(School of Electronic Engineering,Xidian University,Xi’an 710071,China;Hangzhou Institute of Technology,Xidian University,Hangzhou 311200,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期36-47,共12页 Journal of Xidian University
基金 国家自然科学基金青年基金(61403294)。
关键词 车辆目标检测 深度学习 注意力机制 合成孔径雷达 像素级目标检测 vehicle detection deep learning attention mechanism synthetic aperture radar(SAR) pixel-level target detection
  • 相关文献

参考文献7

二级参考文献27

共引文献88

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部