期刊文献+

基于深度学习和层次语义模型的极化SAR分类 被引量:13

Polarimetric SAR Image Classification Based on Deep Learning and Hierarchical Semantic Model
下载PDF
导出
摘要 针对复杂场景的极化合成孔径雷达(Synthetic aperture radar,SAR)图像,堆叠自编码模型能够自动学习高层特性,有效表示城区、森林等复杂地物的结构,然而,却难以保持图像的边界和细节.为了克服该缺点,本文结合深度自编码器和极化层次语义模型(Polarimetric hierarchical semantic model,PHSM),提出了新的无监督的极化SAR图像分类算法.该方法根据极化层次语义模型,将复杂的极化SAR图像划分为聚集、匀质和结构三大区域.对聚集区域,采用堆叠自编码模型进行高层特征表示,并构造字典得到稀疏特征进行分类;对匀质区域,采用层次模型进行分类;对于结构区域,进行线目标保留和边界定位.实验结果表明,该算法通过不同的分类策略优势互补,能够得到区域一致性好且边界保持的分类结果. Stacked auto-encoder model can effectively represent the complex terrain structures, such as the urban and the forest, by automatically learning high-level features. However, it has difficulty in preserving details and edges. In order to overcome this shortcoming, a new unsupervised polarimetric synthetic aperture radar (PolSAR) classification method is proposed by combining the deep learning and the polarimetric hierarchical semantic model (PHSM). According to the PHSM, a PolSAR image is partitioned into aggregated, homogeneous and structural regions. For aggregated regions, a stacked auto-encoder model is applied to learn high-level features, and further the sparse representation and classification is constructed by learning a dictionary with high-level features. For homogeneous regions, hierarchical segmentation and classification is applied. In addition, edges are located and line objects are preserved for structural regions. Experimental results demonstrate that the proposed method can obtain good performance in both region homogeneity and edge preservation.
出处 《自动化学报》 EI CSCD 北大核心 2017年第2期215-226,共12页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2013CB329402) 国家自然科学基金(61573267 61571342 61572383) 国家自然科学基金青年科学基金项目(31300473) 教育部"长江学者和创新团队发展计划"(IRT1170) 高等学校学科创新引智计划(B07048) 福建省自然科学基金(2014J01073)资助~~
关键词 叠自编码器 极化层次语义模型 极化SAR分类 区域划分 层次分割 Stacked auto-encoder, polarimetric hierarchical semantic model (PHSM), polarimetric synthetic aperture radar (SAR) image classification, region partition, hierarchical segmentation
  • 相关文献

参考文献1

二级参考文献1

共引文献4

同被引文献133

引证文献13

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部