期刊文献+

基于多层反卷积网络的SAR图像分类 被引量:4

Classification of SAR Images Based on Deep Deconvolutional Network
原文传递
导出
摘要 针对传统特征提取方法不能提取目标高层结构特征的问题,提出了一种基于软概率的池化方法,结合多层反卷积网络,学习目标的高层结构特征,并将其用于合成孔径雷达(SAR)图像分类。首先对SAR图像进行子块划分,然后对每个子块进行基于多层反卷积网络的特征编码,学习出不同层次上的图像特征,最后将该特征用于支持向量机(SVM)分类器,实现SAR图像的分类。在国内首批SAR数据上的实验表明,该算法获得了较高的分类准确率。 Aim at the problem that the traditional feature extraction methods cannot get the high level structure features,this paper put forward a new soft probability pooling method,which is used in multilayer Deconvolutional Network,then high level structure features can be learned and be used for classification of SAR image.Firstly,the SAR image was divided into patches;then,the feature coding of each patch was obtained by means of multilayer Deconvolutional Networks,which can learn features suitable for image classification in different scale;finally,the SAR image was classified through the features used in SVM classifier.Experimental results on the first batch domestic PolSAR images show that the classification accuracy rate of the proposed algorithm is superior.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第10期1371-1376,共6页 Geomatics and Information Science of Wuhan University
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB733404) 国家自然科学基金资助项目(41371342 61331016) 湖北省自然科学基金资助项目~~
关键词 合成孔径雷达 多层学习 反卷积网络 图像分类 软概率池化 synthetic aperture radar multilayer learning deconvolutional network image classification soft probability pooling
  • 相关文献

参考文献12

二级参考文献55

  • 1夏昕,罗代升,罗峰,林宏津.一种有效的SAR图象典型目标特征提取和识别方法[J].四川大学学报(自然科学版),2005,42(5):969-973. 被引量:5
  • 2Henri Maitre[法].合成孔径雷达图像处理.北京:电子工业出版社,2005 被引量:2
  • 3Olshausen B A, Field D J. Sparse coding with an over com- plete basis set: a strategy employed by VI? Vision Research, 1997, 37(23): 3311-3325. 被引量:1
  • 4Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of the Neural Information Pro- cessing Systems. Vancouver, Canada: The MIT Press, 2006. 801-808. 被引量:1
  • 5Aharon M, Elad M, Bruckstein A M. K-SVD: an algo- rithm for designing overcomplete dictionaries for sparse rep- resentation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. 被引量:1
  • 6Bottou L. Online learning and stochastic approximations. Online Learning in Neural Networks. Cambridge: Cam- bridge University Press, 1998. 9-42. 被引量:1
  • 7Wang J J, Yang J C, Yu K, Lv F J, Huang T, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the IEEE Conference on Computer Vi- sion and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367. 被引量:1
  • 8Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories. In: Proceedings of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Wash- ington D. C., USA: IEEE, 2006. 2169-2178. 被引量:1
  • 9Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyra- mid matching using sparse coding for image classification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE. 2009. 1794-1801. 被引量:1
  • 10Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1

共引文献53

同被引文献41

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部