期刊文献+

基于多尺度压缩感知金字塔的极化干涉SAR图像分类 被引量:15

PolInSAR Image Classification Based on Compressed Sensing and Multi-scale Pyramid
下载PDF
导出
摘要 提出了一种新的基于多尺度压缩感知(Compressed sensing,CS)金字塔的分类方法,用于合成孔径雷达(Synthetic aperture radar,SAR)图像的分类.首先通过原始图像上的小波平滑和特征提取构建多尺度极化干涉特征空间,然后利用压缩感知提取每一个尺度上图像子块的观测域特征并在数据域重建稀疏特征,最后组合多尺度的稀疏特征生成最终用于分类的多尺度金字塔表达.针对稀疏编码和一般金字塔算法的局限性,提出了基于压缩感知和多尺度金字塔的方法,利用观测矩阵降低特征维数的优势的同时,对SAR图像的纹理特征进行不同尺度的分析.在国内首批极化干涉SAR数据上的实验证明了上述算法的有效性. In this paper,we propose a novel approach based on compressed sensing(CS) and multi-scale pyramid in synthetic aperture radar(SAR) image classification.Firstly,a multi-scale PolInSAR feature space is constructed by wavelet transform and feature extraction on the original image;then,CS provides a transform for the measurement domain and recovers the sparse features in the data domain on the image patches in each scale;finally,the combination of multi-scale sparse features generates the final multi-scale pyramid representation of the image for classification.Motivated by the limitations of sparse coding and general pyramid methods,we not only take the advantages of observation matrix in dimension reduction,but also perform analysis on texture features in different scales.Experimental results on the first batch of PolInSAR data show the presented approach s effciency.
出处 《自动化学报》 EI CSCD 北大核心 2011年第7期820-827,共8页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2007CB714405) 国家自然科学基金(60702041) 测绘遥感信息工程国家重点实验室专项科研经费资助~~
关键词 图像处理 合成孔径雷达 图像分类 压缩感知 多尺度金字塔 Image processing synthetic aperture radar(SAR) image classification compressed sensing(CS) multi-scale pyramid
  • 相关文献

参考文献14

  • 1Henri Maitre[法].合成孔径雷达图像处理.北京:电子工业出版社,2005 被引量:2
  • 2Olshausen B A, Field D J. Sparse coding with an over com- plete basis set: a strategy employed by VI? Vision Research, 1997, 37(23): 3311-3325. 被引量:1
  • 3Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of the Neural Information Pro- cessing Systems. Vancouver, Canada: The MIT Press, 2006. 801-808. 被引量:1
  • 4Aharon M, Elad M, Bruckstein A M. K-SVD: an algo- rithm for designing overcomplete dictionaries for sparse rep- resentation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. 被引量:1
  • 5Bottou L. Online learning and stochastic approximations. Online Learning in Neural Networks. Cambridge: Cam- bridge University Press, 1998. 9-42. 被引量:1
  • 6Wang J J, Yang J C, Yu K, Lv F J, Huang T, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the IEEE Conference on Computer Vi- sion and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367. 被引量:1
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories. In: Proceedings of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Wash- ington D. C., USA: IEEE, 2006. 2169-2178. 被引量:1
  • 8Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyra- mid matching using sparse coding for image classification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE. 2009. 1794-1801. 被引量:1
  • 9Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 10Shimoni M, Borghys D, Heremans R, Perneel C, Acheroy M. Fusion of PolSAR and PolInSAR data for land cover classifi- cation. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3): 169-180. 被引量:1

共引文献1

同被引文献217

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2廖静娟,郭华东,邵芸.多时相SAR干涉测量数据探测地表特征变化[J].遥感技术与应用,2005,20(6):543-546. 被引量:4
  • 3Schwartz J, Steinberg B. Ultrasparse, ultrawideband arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45 (2) 376-393. 被引量:1
  • 4Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proeeedings of the IEEE Radar Conferenee. Newark, N J, USA: IEEE, 2004:71-78. 被引量:1
  • 5Candes E. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain : [s. n. ], 2006 : 1433-1452. 被引量:1
  • 6Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489- 509. 被引量:1
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306. 被引量:1
  • 8Candes E J, Romberg J. Practical signal recovery from random projections[C]//Proceedings of SPIE. San Jose, CA, USA: SPIE,2005:56-74. 被引量:1
  • 9Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86 (3): 533-548. 被引量:1
  • 10Kashin B. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv, Akad, Nauk SSSR, 1977,41(2) : 334-351. 被引量:1

引证文献15

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部