期刊文献+

基于多尺度宽激活残差注意力网络的图像去块效应 被引量:3

Image deblocking based on multi-scale wide-activated residual attention network
下载PDF
导出
摘要 为了节约传输带宽和存储资源,成像设备和系统一般对图像和视频进行了有损压缩.由于分块量化编码,JPEG图像往往存在明显的块效应.去除图像的块效应不仅能够改善使用者的视觉体验,还有利于其他计算机视觉任务的开展.为此,本文提出了一种基于多尺度宽激活残差注意力网络(MWRAN)的图像去块效应方法. MWRAN主要由多尺度宽激活残差注意力模块(MWRAB)构建而成.提出的MWRAB不仅能够激活更多的非线性特征以促进信息在网络中的流动,还能够捕获丰富的图像多尺度特征.此外,通过提出的轻量的差异感知通道注意力(LCCA),MWRAB能够对学习到的特征进行自适应地调整以关注更重要的信息.消融实验验证了MWRAB的有效性.在常用的基准数据集上,MWRAN取得了比几种先进的图像去块效应方法更高的客观评价指标和更接近原图的主观视觉效果. To save transmission bandwidth and storage resources, imaging devices and systems generally perform lossy compression on images and videos. JPEG images usually suffer from obvious blocking effect due to block quantization coding. Removing the blocking effect of the image can not only improve the visual experience of users, but also facilitate other computer vision tasks. Therefore, an image deblocking method based on multi-scale wide-activated residual attention network(MWRAN) is proposed. The MWRAN is mainly constructed by the multi-scale wide-activated residual attention block(MWRAB). The MWRAB can not only activate more non-linear features to promote the flow of information in the network, but also capture rich image multi-scale features. In addition, the MWRAB can adaptively adjust the learned features to focus on more important information via the proposed lightweight contrast-aware channel attention(LCCA). The ablation experiment is conducted to verify the effectiveness of the proposed MWRAB. The MWRAN achieves higher objective evaluation indices and produces subjective perceptual effects closer to the original image than several state-of-the-art image deblocking methods on common benchmark datasets.
作者 柯贤贵 陈正鑫 张越迁 何小海 张翔 刘巍 KE Xian-Gui;CHEN Zheng-Xin;ZHANG Yue-Qian;HE Xiao-Hai;ZHANG Xiang;LIU Wei(Exploration Division,Xinjiang Oilfield Company,Petro China,Karamay 834000,China;College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期83-92,共10页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61871279,62211530110) 成都市重大科技应用示范项目(2019-YF09-00120-SN)。
关键词 卷积神经网络 多尺度 宽激活 注意力机制 去块效应 Convolutional neural network Multi-scale Wide-activated Attention mechanism Deblocking
  • 相关文献

参考文献6

二级参考文献35

共引文献41

同被引文献24

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部