期刊文献+

基于DenseASPP模型的超声图像分割 被引量:9

Ultrasound image segmentation based on DenseASPP model
下载PDF
导出
摘要 利用超声图像获取胎儿的各项生物指标,对诊断胎儿发育过程中的异常有重要作用.当前主要依靠医生对超声图像的手动测量来确定这些指标.然而,医师手动测量不仅具有主观性,而且在重复作业下效率低下.针对以上问题,提出一种基于DenseASPP模型的超声图像分割改进算法,以辅助医生完成对胎儿各项生物指标的测量.在DenseASPP模型中,首先利用普通卷积预先提取原始图像的特征得到预特征图,再以扩张卷积及金字塔池化结构为基础将前层所有扩张卷积的输出特征图与预特征图拼接在一起传输到下一层扩张卷积以获得更大感受野的多尺度特征图,最终将所有特征合并后通过Attention机制获得相关联的特征,再利用sigmoid函数获取分割结果.分别使用胎儿的头臀径,头围,腹围三个部位的超声图像作为数据集对本文提出的DenseASPP方法进行了评估.实验结果表明,DenseASPP方法优于其他当前常见的分割方法,取得了更好的性能. Obtaining fetal biological indicators from ultrasound images plays a significant role in diagnosing fetal abnormality.However,manual measurement by physicians is not only subjective,but also leads to inefficiency under repeated operations.To solve the above problems,we propose an improved ultrasound image segmentation algorithm based on DenseASPP model to assist in the measurement of fetal indicators.According to the atrous convolution and structure of Atrous Spatial Pyramid Pooling,the authors firstly extract the pre-feature maps of the original image by the ordinary convolution,then the output of each atrous layer is concatenated with the input feature map and all the outputs from lower layers,and the concatenated feature map is fed into the following layer.Finally,all the features are merged to obtain the relevant features through the Attention mechanism,and sigmoid function is used to obtain the segmentation results.We evaluate the method using ultrasound images of fetal head and hip diameters,head circumference,and abdominal circumference as data sets.The experimental results show that this method is superior to other advanced segmentation methods and has better performance.
作者 李頔 王艳 马宗庆 张波 罗红 周激流 LI Di;WANG Yan;MA Zong-Qing;ZHANG Bo;LUO Hong;ZHOU Ji-Liu(College of Electronic Information, Sichuan University, Chengdu 610065, China;School of Computer Science, Sichuan University, Chengdu 610065, China;Department of Ultrasound, West China Second Hospital, Sichuan University, Chengdu 610065, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期741-748,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61701324)。
关键词 超声图像 图像分割 深度学习 扩张卷积 Ultrasound images Image segmentation Deep learning Atrous convolution
  • 相关文献

参考文献5

二级参考文献48

  • 1Khan M W. A survey image segmentation tech- niques[J]. Int J Future Comput Commun, 2014, 3(2) : 89. 被引量:1
  • 2Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations. The fifteenth Dean Jacqueline B. Lewis memorial leetures[C]. Boston MA, USA.. American Mathe-matical Socie- ty, 2001. 被引量:1
  • 3Yuan J Y, Wang D L, Li R X. Remote sensing im- age segmentation by combining spectral and texture features [J]. IEEE Trans Geosci Remote , 2014,52 (1) : 16. 被引量:1
  • 4Tran K A, Vo N Q, Nguyen T T, et al. Gaussian Mixture Model Based on Hidden Markov Random Field for Color Image Segmentation[C]// Ubiquitous Infor- mation Technologies and Applications. Berlin, Germa- ny: Springer Berlin Heidelberg, 2014. 被引量:1
  • 5Larsen B, Aone C. Fast and effective text mining using linear-time document clustering[C]// Proceedings of the fifth San Diego, California ACM SIGKDD interna- tional conference on Knowledge discovery and data mining. San Diego, California. ACM, 1999. 被引量:1
  • 6Andersson T, Lathen G, Lenz R, et al. Modified gradient search for level set based image segmenta- tion[J]. IEEE Trans Image Proc, 2013, 22 (2) : 621. 被引量:1
  • 7Brown E S, Chan T F, Bresson X. Completely con- vex formulation of the chan-vese image segmenta- tion model [J] Int J Comput Vision, 2012, 98 (9) : 103. 被引量:1
  • 8Yin J J, Yang J. A modified level set approach for segmentation of multi-band polarimetric SAR ima- ges[J]. IEEE Trans Geosei Remote Sens, 2014,52 (11) : 7222. 被引量:1
  • 9Yang X, Gao X B, Tao D C , etal. Improving level set method for fast auroral oval segmentation[J]. IEEE Trans Image Proc , 2014,23(7) : 2854. 被引量:1
  • 10Wang B, Gao X B, Tao D Ch, etal. A nonlinear a- daptive level set for image segmentation[J]. IEEE Trans Cybern, 2014, 44(3): 418. 被引量:1

共引文献55

同被引文献64

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部