摘要
推动农户参与“双碳”目标建设,发挥其在农业应对气候变化中的主体作用具有重要意义。本文从“大国小农”的现实背景出发,采用自下而上的评价视角来考察农业低碳生产的绩效水平,通过多角度控制农业碳计量技术的不确定性,选取多产出Translog距离函数形式的随机前沿模型估计农户低碳生产的技术效率,并进一步分析其影响因素,探索低碳生产技术效率在农户经营主体中的改善途径。研究表明:(1)调研区域农户在低碳生产粮食作物上具有15%的潜在增产空间,产出情景和方法模型的变异对低碳生产技术效率估计结果的影响并不显著。(2)在不同类型粮食作物之间,模型估计的生产前沿和技术非效率影响因素既有共性也有差异,其中,土地规模、土地细碎化、老龄化和非农就业均对低碳生产的技术效率产生了非线性影响。提升农户低碳生产的技术效率水平,需要进一步引导农户通过土地流转实现适度规模经营,加强农村家庭剩余劳动力转移,降低农业社会化服务购买成本,提高绿色低碳技术的采用率。
It is of great significance to guide smallholders to participate in the implementation of the“carbon emission peaking and carbon neutrality”action goals, and to pay attention to their responsibilities in agricultural sector responses to climate change. Considering the reality of smallholder dominance in agricultural production in China, we took a bottom-up evaluation perspective to evaluate the performance level of agricultural low-carbon production. Through comprehensive control of the uncertainty of agricultural carbon accounting technology, the stochastic frontier model in the form of multi-output Translog distance function was mainly used to estimate the technical efficiency of smallholders’ low-carbon production process, and the influencing factors were further analyzed to explore the measures to improve the technical efficiency of smallholders. The results show that under the scenario of considering carbon emission constraints and expected output from carbon sinks, the average technical efficiency of smallholders for producing wheat and maize are 0.88 and 0.90, respectively, and there is a potential increase of15%. Land scale, land fragmentation, aging of agricultural laborers, and non-farming employment have a non-linear impact on the technical efficiency of low-carbon production of smallholders, and there are differences in the improvement path of technical efficiency for different types of food crops. Guiding farmers to achieve moderate scale operations through land transfer, transferring surplus family labor, reducing the cost of agricultural social services, and increasing the adoption rate of low-carbon technologies are important measures to promote the development of low-carbon agriculture.
作者
陈儒
孔英
CHEN Ru;KONG Ying(Low Carbon Economy and Financial Risk Analysis Research Laboratory,Tsinghua Shenzhen International Graduate School,Shenzhen 518055,China)
出处
《资源科学》
CSSCI
CSCD
北大核心
2022年第7期1405-1421,共17页
Resources Science
基金
国家自然科学基金项目(72203124)
中国博士后基金项目(2022M711835)。
关键词
低碳农业
碳足迹
技术效率
随机前沿分析
农户
陕西
low-carbon agriculture
carbon footprint
technical efficiency
stochastic frontier analysis
smallholders
Shaanxi