摘要
Adsorptive recovery of valuable components from industrial wastewater is highly desirable for avoiding resource wastage but remains a challenge.Herein,we develop an efficient continuous adsorption process for recovering aromatic compounds in wastewater from styrene monomer and propylene oxide coproduction(SMPO)plant.Based on our insight into the potential of bio-based porous materials for adsorption application,starch-graft-polystyrene(SPS)and aryl-modifiedβ-cyclodextrin(ACD)were prepared,and novel hypercrosslinked porous polymers combined SPS with ACD(HSPS-ACDs)were synthesized through external crosslinking approach.In a binary-component system,the best-performing one HSPS-ACD(H)with high ACD content and large specific surface area possessed superior capacities for the representative aromatic compounds,acetophenone(AP,2.81 mmol·g^(-1))and 1-phenylethanol(1-PE,1.35 mmol·g^(-1))compared with the previously reported materials.Further,the adsorption properties of aromatic compounds on HSPS-ACD(H)were investigated in batch mode.For practical application,continuous adsorption experiments were conducted in a HSPS-ACD(H)-packed fixed bed,where the target aromatic components in wastewater were effectively retained and further released by elution.Besides showing the reversible adsorption and efficient enrichment effect,the HSPS-ACD(H)-packed fixed bed also maintained great stability in multiple cycles.Moreover,quantum chemical calculations were performed to elucidate the potential mechanism of adsorption of AP and 1-PE onto HSPS-ACD(H).
基金
supported by National Natural Science Foundation of China(21868002 and 21961160741)
the Natural Science Foundation of Guangxi Province(2018GXNSFAA281206,2020GXNSFGA297001,2020GXNSFAA297044)
Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z010)
Specific research project of Guangxi for research bases and talents(AD18126005)
special funding for‘Guangxi Bagui Scholars’,Guangxi scholarship fund for the middle-aged backbone teachers。