期刊文献+

Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal 被引量:2

下载PDF
导出
摘要 Date palm fiber(DPF)derived from agrowaste was utilized as a new precursor for the optimized synthesis of a costeffective,nanostructured,powderactivated carbon(nPAC)for aluminum(Al3+)removal from aqueous solutions using carbonization,KOH activation,response surface methodology(RSM)and central composite design(CCD).The optimum synthesis condition,activation temperature,time and impregnation ratio were found to be 650℃,1.09 hour and 1:1,respectively.Furthermore,the optimum conditions for removal were 99.5%and 9.958 mgg 1 in regard to uptake capacity.The optimum conditions of nPAC was analyzed and characterized using XRD,FTIR,FESEM,BET,TGA and Zeta potential.Moreover,the adsorption of the Al3+conditions was optimized with an integrated RSMCCD experimental design.Regression results revealed that the adsorption kinetics data was well fitted by the pseudosecond order model,whereas the adsorption isotherm data was best represented by the Freundlich isotherm model.Optimum activated carbon indicated that DPF can serve as a costeffective precursor adsorbent for Al^(3+)removal.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期472-484,共13页 中国化学工程学报(英文版)
  • 相关文献

参考文献2

共引文献10

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部