摘要
当前高校家庭经济困难学生精准资助工作具有复杂性和动态性,在公共政策、精准扶贫、资助育人等维度存在诸多不足。大数据具有信息采集和分析优势,其中决策树算法、聚类算法等能够为精准资助工作赋能,帮助实现对家庭经济困难学生的精准认定和主动识别,助力构建起大数据与精准资助相结合的精准资助体系,从整体上提升精准资助效能。
In view of the limitations and complexity of the current targeted financial aid for financially disadvantaged college students,there are still inadequacies in promoting targeted financial aid from the perspectives of public policy,targeted poverty alleviation,and funding for education.With the advantages of information collecting and analysis,big data can improve the technical aspect of targeted funding and help realize the active and accurate identification of financially disadvantaged college students at the application level.To be specific,the decision tree algorithm and clustering algorithm can be used to build a more precise system combining big data and targeted funding,so as to improve the efficiency of targeted funding on the whole.
作者
陈昊
杨志邦
廖良梅
CHEN Hao;YANG Zhibang;LIAO Liangmei(School of Computer Science and Engineering,Changsha University,Changsha Hunan 410022,China)
出处
《长沙大学学报》
2022年第5期70-73,82,共5页
Journal of Changsha University
基金
国家自然科学基金青年项目“基于GPU异构体系结构的大规模组Skyline查询关键技术研究”,编号:61802032
湖南省教育厅科研项目“大数据视域下高校家庭经济困难学生精准资助体系研究”,编号:21C0741
湖南省学位与研究生教育改革研究项目“地方应用型高校新增计算机类专业学位硕士点研究生培养模式研究”,编号:2020JGYB268。