期刊文献+

基于车辆-行人轨迹预测的人车冲突预警策略研究

Research on Warning Strategy of Human-vehicle Conflict Based on Vehicle-pedestrian Trajectory Prediction
下载PDF
导出
摘要 针对现有车载行人预警系统预警准确度较低的问题,采用激光雷达和行车记录仪对车辆-行人的交互冲突数据进行采集,建立基于隐马尔可夫模型(Hidden Markov Model,HMM)的目标轨迹预测模型,利用Baum-Welch算法和Viterbi算法分别进行参数训练和轨迹预测,并提出一种车辆-行人冲突预警规则。验证结果表明:将车辆到达斑马线的时间等于3s时作为冲突预警阈值最为合理,此时冲突的识别率为79.6%,可以较为准确地预测出车辆和行人可能存在的冲突,为车载行人预警系统提供有效参考。 To address the problem of low warning accuracy of the existing vehicle-pedestrian warning system,the vehicle-pe⁃destrian interaction conflict data is collected by LiDAR and vehicle recorder,a target trajectory prediction model based on hidden Markov model(HMM)is established,and Baum-Welch algorithm and Viterbi algorithm are used for parameter training and the Baum-Welch algorithm and Viterbi algorithm are used for parameter training and trajectory prediction,and a vehicle-pedestrian conflict warning rule is proposed.The validation results show that it is most reasonable to use the time when the vehicle reaches the crosswalk equal to 3 seconds as the conflict warning threshold,and the conflict recognition rate is 79.6%at this time,which can pre⁃dict the possible conflicts between vehicles and pedestrians more accurately and provide an effective reference for the in-vehicle pe⁃destrian warning system.
作者 施雯 刘艳娟 赵彬 SHI Wen;LIU Yanjuan;ZHAO Bin(Department of Finance and Economics,Shaanxi Youth Vocational College,Xi'an 710068;School of Automobile,Chang'an University,Xi'an 710064)
出处 《计算机与数字工程》 2022年第7期1480-1484,1603,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:51908054) 2021年度陕西省职业技术教育学会课题(编号:2021SZXYB32)资助。
关键词 车载行人预警 隐马尔可夫 轨迹预测 冲突预警 vehicular pedestrian warning hidden Markov trajectory prediction conflict warning
  • 相关文献

参考文献10

二级参考文献31

  • 1姚宏亮,王浩,张佑生,方宝富.一种基于结构分解的影响图模型选择算法[J].计算机科学,2007,34(1):133-135. 被引量:2
  • 2Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proc IEEE, 1989,77(2):257-286. 被引量:1
  • 3Rabiner LR. An introduction to hidden Markov models [J]. IEEE ASSP Magazine, 1986,3(1) : 4-16. 被引量:1
  • 4Cohen A. HiddenMarkov models in biomedical signal processing[C]. Proc 20th International Conference EMBS/IEEE,Hongkong, 1998. 被引量:1
  • 5Burrat C,Hughey R. Karplus K. Scoring hidden Markov models [J]. Computer Application in Bioscience,1997,13:191-199. 被引量:1
  • 6Deller JR, Hsu D,Ferrier LJ. Encouraging results in the automated recognition of cerebral palsy speech[J]. IEEE Trans BME, 1988,BME-55:218-220. 被引量:1
  • 7Deller JR, Hsu D, Ferrier LJ. On the use of hidden Markov modelling for recognition of Dysarthric speech [J]. Comp Methods and Programs in Biomed, 1991,35:125-139. 被引量:1
  • 8Coast DA,StemRM, Cano GG,et al. An approach to cardiac arrhythmia analysis using hidden Markov models[J]. IEEE Trans BME,1990,BME-17(9) :826-835. 被引量:1
  • 9liporace LA. Maximum likelihood estimation for multirate observation of Markov sources [J]. 1986, IT-32(2):307-309. 被引量:1
  • 10Juang BH,Levinson SV,Sondhi MM. Maximum likelihood estimation for multivartiate mixture observations of Markov chains[J]. IEEE Trans on Information Theory, 1986,IT-32 (2): 307-309. 被引量:1

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部