期刊文献+

基于Web访问信息的用户兴趣迁移模式的研究 被引量:5

Research of User Interest Drift Pattern Based on Web Access Information
下载PDF
导出
摘要 针对用户浏览网页的兴趣会随时间而变化这一现象,设计了一种网络用户兴趣迁移模式的挖掘模型。把用户的访问兴趣通过隐马尔可夫模型抽象成一种时间序列,以此反映用户兴趣的序列性,进而利用GSP算法从用户兴趣序列中挖掘出用户兴趣的迁移模式。实验证明该方法是有效的,从时间属性上更深层次地描述了用户兴趣的变化情况。 Focused on the phenomenon that the visited interest of user would change with time,a model of mining user's interest drift pattern was proposed.Abstracted the visited interest of user into a time sequence with the method of hidden Markov,which was used to reflect the sequential features of the user interest.Used GSP algorithm to mine the drift of user's visited interest pattern from the interested sequence of user.At last,verified the feasibility of the given model using the simulation experiments,and the model could give a deeper description of the draft of the visited interest on the attribute of time.
出处 《计算机科学》 CSCD 北大核心 2011年第5期175-177,219,共4页 Computer Science
基金 陕西省自然科学基金资助项目(SJ08-ZT15) 陕西省教育厅专项科研计划项目(08JK425)资助
关键词 兴趣迁移模式 隐马尔可夫模型 序列模式挖掘 User interest drift pattern Hidden markov model Sequential pattern mining
  • 相关文献

参考文献10

  • 1Land C, Soltysiak S. Identifying and Tracking Changing Interests[J]. International Journal of Digital Libraries, 1998,2 : 38- 53. 被引量:1
  • 2Cxand W, Kubat M. Learning in the Presence of Concept Drift and Hidden Contexts[J]. Machine Learning, 1996,23 : 69- 101. 被引量:1
  • 3Maloof M, Michalski S. Selecting Examples for Partial Memory Learning[J].Machine Learning, 2000,41 : 27- 52. 被引量:1
  • 4Koychev I, Schwab I. Adaptation to Drifting User's Interests [C]//Proeeedings of ECML2000 Workshop: Machine Learning in New Information Age. Barcelona, Spain, 2000 : 36-45. 被引量:1
  • 5Ding Y, Li X. Time weight collaborative filtering [C]//Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM). New York, NY, USA.. ACM Press, 2005 : 485-492. 被引量:1
  • 6Rabiner L R. A Tutorial on Hidden Markov Models and selected Applications in Speech Recognition [J ]. Proceeding of the IEEE, 1989,77 : 257- 286. 被引量:1
  • 7刘立军,崔杰,梅红岩.GSP与PrefixSpan算法的比较与分析[J].辽宁工学院学报,2006,26(5):300-302. 被引量:4
  • 8谭薇.基于Web访问信息的用户兴趣迁移模式的研究[D].西安:西安邮电学院,2010. 被引量:1
  • 9宗成庆编著..统计自然语言处理[M].北京:清华大学出版社,2008:475.
  • 10刘河生,高小榕,杨福生.隐马尔可夫模型的原理与实现[J].国外医学(生物医学工程分册),2002,25(6):253-259. 被引量:17

二级参考文献20

  • 1Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proc IEEE, 1989,77(2):257-286. 被引量:1
  • 2Rabiner LR. An introduction to hidden Markov models [J]. IEEE ASSP Magazine, 1986,3(1) : 4-16. 被引量:1
  • 3Cohen A. HiddenMarkov models in biomedical signal processing[C]. Proc 20th International Conference EMBS/IEEE,Hongkong, 1998. 被引量:1
  • 4Burrat C,Hughey R. Karplus K. Scoring hidden Markov models [J]. Computer Application in Bioscience,1997,13:191-199. 被引量:1
  • 5Deller JR, Hsu D,Ferrier LJ. Encouraging results in the automated recognition of cerebral palsy speech[J]. IEEE Trans BME, 1988,BME-55:218-220. 被引量:1
  • 6Deller JR, Hsu D, Ferrier LJ. On the use of hidden Markov modelling for recognition of Dysarthric speech [J]. Comp Methods and Programs in Biomed, 1991,35:125-139. 被引量:1
  • 7Coast DA,StemRM, Cano GG,et al. An approach to cardiac arrhythmia analysis using hidden Markov models[J]. IEEE Trans BME,1990,BME-17(9) :826-835. 被引量:1
  • 8liporace LA. Maximum likelihood estimation for multirate observation of Markov sources [J]. 1986, IT-32(2):307-309. 被引量:1
  • 9Juang BH,Levinson SV,Sondhi MM. Maximum likelihood estimation for multivartiate mixture observations of Markov chains[J]. IEEE Trans on Information Theory, 1986,IT-32 (2): 307-309. 被引量:1
  • 10Kuo S,Agazzi E. Keyword spotting in poorly printed documents using pseudo 2-D Markov model[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994,PAMI-16 (8): 842-848. 被引量:1

共引文献19

同被引文献43

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部