期刊文献+

复杂背景下基于LBP纹理特征的运动目标快速检测算法 被引量:8

Fast moving target detection algorithm based on LBP texture feature in complex background
下载PDF
导出
摘要 在雨雪天气、树叶晃动、水面闪烁等有复杂背景的可见光与红外场景中,快速准确地提取完整目标一直是运动目标检测中的首要难题。为了满足实时性,并针对现有视频的前景提取算法依赖先验信息、召回率低、缺乏纹理和噪声较大等问题,提出了一种基于直方图统计和改进的局部二值模式(Local Binary Pattern,LBP)纹理特征相结合的背景建模方法。首先,使用各像素直方图的众数作为参考背景,无需先验知识,节省了大量存储空间,再采用邻域补偿策略提出了一种改进的S_MBLBP纹理直方图与参考背景进行背景建模,消除了大部分动态背景和光照变化影响,实现目标的精确提取。实验表明,所提的算法在红外和可见光的多种复杂场景下,能快速提取前景目标的同时,提高了准确率和召回率。 In the visible and infrared scenes with complex background,such as rain and snow weather,leaf swaying,shimmering water,etc.,fast and accurate extraction of a complete target has always been the primary problem in moving target detection.In order to be real time and aiming at the problems of existing video foreground extraction algorithms,such as dependence on prior information,low recall rate,lack of texture and large noise,a background modeling method based on histogram statistics and improved LBP(Local Binary Pattern)texture features is proposed.Firstly,the mode of each pixel histogram is used as the reference background without prior knowledge,which saves a lot of storage space.Then,an improved S_MBLBP texture histogram is proposed to model the background with the reference background by using neighborhood compensation strategy,which eliminates the most dynamic background and illumination changes,and realizes the accurate extraction of the target.Experimental results show that the proposed algorithm can quickly extract foreground targets in a variety of complex infrared and visible scenes,and can improve the accuracy and recall rate at the same time.
作者 裘莉娅 陈玮琳 李范鸣 刘士建 李争 谭畅 QIU Li-Ya;CHEN Wei-Lin;LI Fan-Ming;LIU Shi-Jian;LI Zheng;TAN Chang(Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Infrared System Detection and Imaging Technology,Chinese Academy of Sciences,Shanghai 200083,China)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2022年第3期639-651,共13页 Journal of Infrared and Millimeter Waves
基金 中国科学院青年创新促进会资助。
关键词 机器视觉 背景建模 LBP纹理特征 运动目标检测 复杂背景 machine vision background modeling LBP textural features moving target detection complex background
  • 相关文献

参考文献11

二级参考文献99

  • 1刘伟,郝晓丽,吕进来.自适应混合高斯建模的高效运动目标检测[J].中国图象图形学报,2020,0(1):113-125. 被引量:22
  • 2辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 3Bakowki A, Jones G A. Video surveillance tracking using colour region adjacency graphs [ J ]. IEEE Conference Publi- cation. 1999,2 (465) : 794 - 798. 被引量:1
  • 4Wixson L. Detecting salient motion by accumulating direc- tionly-consistent flow [ J ]. IEEE Transactions of Pattern Analysis and Machine Intelligence. 2000,22( 8 ) :774 - 780. 被引量:1
  • 5A Shahbahrami, B Juurlink, S Vassiliadis. Accelerating color space conversion using Extended subwords and the matrix register file [ C ]. Eighth IEEE International Symposi- um on Multimedia ,2006:37 - 46. 被引量:1
  • 6David G. Lowe. Object recognition from Local seale-invari- ant features [ J ]. International Conference on Computer Vi- sion, Corfu, September, 1999,3 ( 1 ) : 1150 - 1157. 被引量:1
  • 7David G. Lowe. Distinctive image features from seale-invar- iant keypoints [ J ]. International Journal of Computer Vi- sion. 2004.60(2) :91 - 110. 被引量:1
  • 8WANG Hong-Bing, PENG Zhen-Ming, LIU Jie, et al. Fea- ture points detection and tracking based on SIFT combining with KLT method[ J]. Proc. SPIE. 2009(7506) :75062N1-10. 被引量:1
  • 9R E Kalman, A new approach to linear filtering and predic- tion problem[ J]. Trans on ASME. Journal of Basic Engi- neering, 1960,82 ( 1 ) : 35 - 45. 被引量:1
  • 10Kalman R E, Bucy R S. New methods and results in linear filtering and prediction theory[J]. Trans on ASME, Jour- nal of Basic Engineering, 1961,83 : 95 - 108. 被引量:1

共引文献106

同被引文献64

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部