期刊文献+

噪声方差未知条件下的视频目标跟踪 被引量:2

Video target tracking algorithm with the noise variance unknown
原文传递
导出
摘要 目的基于卡尔曼滤波的视频目标跟踪算法需要事先获得过程噪声和观测噪声方差,但在实际应用中,无法得知这两种噪声方差的准确值。此外,由于目标运动的随机性和视频场景中背景的复杂性,噪声方差也会随时间发生动态变化。如果设定的噪声方差不准确,跟踪精度会受影响,严重时会导致目标跟踪失败。考虑到上述问题,提出一种新的解决方法。方法将带遗忘因子的推广递推最小二乘法(EFRLS)运用到视频目标跟踪研究领域。在该算法中,无需使用噪声方差,首先利用Mean Shift算法获得目标位置的初步估计,再利用EFRLS算法估计下一帧目标的位置。结果该算法明显好于传统Mean Shift算法,并且与Kalman结合Mean Shift算法的跟踪性能相当。此外,在目标发生严重遮挡时,该算法优于Kalman结合Mean Shift算法,具有较好的跟踪性能。结论本文算法无需设置噪声参数,可以实现目标在发生严重遮挡和遮挡后目标重新出现的情况下的准确跟踪,提高了跟踪的鲁棒性,具有一定的工程使用价值。 Objective Video target tracking algorithms based on Kalman filter require prior information, such as process noise and observation noise variance. However, we cannot determine the exact values of beth noise variance in practical ap- plications. Moreover, noise variance occasionally changes dynamically because of target randomness and background video scene complexity. If noise variance is inaccurate, tracking accuracy is degraded or tracking failure is brought out. In view of these problems, a new solution is proposed in this paper. Method In combination with the forgetting factor recursive least squares (EFRLS) method, a new algorithm that is applied to video target tracking without use of noise variance is presented in this article. First, mean shift is used to obtain a preliminary estimate of the target position. Then, the EFRLS method is used to estimate the position in the next frame. Result Experimental results show that the proposed algorithm is significantly better than traditional mean shift algorithm and is equivalent to Kalman tracking algorithm combined with mean shift. In addition, if severe occlusions exist in between targets, this algorithm is better than Kalman tracking algorithm combined with mean shift. The proposed algorithm also has good tracking performance. Conclusion Setting parameters of noises is not necessary. Accurate tracking results can be achieved when serious occlusions exist or re-emerging occurs after occlusions. The robustness of the new algorithm is then enhanced, which can be used for some engineering applications.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第7期906-913,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61201118 61201453) 中国博士后科学基金项目(2103M532020) 教育部博士点基金项目(20121401120015) 陕西省教育厅科研计划项目(14JK1304) 西安工程大学学科建设经费资助项目
关键词 视频目标跟踪 噪声方差未知 卡尔曼滤波 带遗忘因子的推广递推最小二乘法(EFRLS) 目标遮挡 video target tracking noise covariance unknown Kalman fiher EFRLS target occlusion
  • 相关文献

参考文献15

  • 1Hu W, Tan T, Wang L, et al. A survey on visual surveillance of object motion and behaviors[ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34 ( 3 ) : 334-352. [DOI: 10. ll09/TSMCC. 2004. 829274 ]. 被引量:1
  • 2王鑫,徐立中著著..图像目标跟踪技术[M].北京:人民邮电出版社,2012:178.
  • 3Wu Y, Lim J, Yang M H. Online object tracking: a benchmark [ C]//Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. Portland, United States: IEEE, 2013 : 2411-2418. [DOI 10. ll09/CVPR. 2013. 312]. 被引量:1
  • 4韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].2版.北京:清华大学出版社,2010. 被引量:30
  • 5Maybeck P S, Jensen R L, Harnly D A. An adaptive extended Kalman filter for target image tracking[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(2) : 173-180. 被引量:1
  • 6Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track- ing[ J ]. IEEE Transactions on Signal Processing, 2002, 50 (2) : 174-188. 被引量:1
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(5) : 564-577. 被引量:1
  • 8Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis, United States: IEEE,2007: 1-6. 被引量:1
  • 9Yang X, Li H, Zhou X. Nuclei segmentation using marker-con- trolled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy [ J]. IEEE Transactions on Circuits and Systems, 2006, 53 ( 11 ) : 2405-2414. [DOI: 10. ll09/TCSI. 2006. 8844691. 被引量:1
  • 10朱胜利,朱善安.基于卡尔曼滤波器组的Mean Shift模板更新算法[J].中国图象图形学报,2007,12(3):460-465. 被引量:20

二级参考文献30

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 2常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 3Bakowki A, Jones G A. Video surveillance tracking using colour region adjacency graphs [ J ]. IEEE Conference Publi- cation. 1999,2 (465) : 794 - 798. 被引量:1
  • 4Wixson L. Detecting salient motion by accumulating direc- tionly-consistent flow [ J ]. IEEE Transactions of Pattern Analysis and Machine Intelligence. 2000,22( 8 ) :774 - 780. 被引量:1
  • 5A Shahbahrami, B Juurlink, S Vassiliadis. Accelerating color space conversion using Extended subwords and the matrix register file [ C ]. Eighth IEEE International Symposi- um on Multimedia ,2006:37 - 46. 被引量:1
  • 6David G. Lowe. Object recognition from Local seale-invari- ant features [ J ]. International Conference on Computer Vi- sion, Corfu, September, 1999,3 ( 1 ) : 1150 - 1157. 被引量:1
  • 7David G. Lowe. Distinctive image features from seale-invar- iant keypoints [ J ]. International Journal of Computer Vi- sion. 2004.60(2) :91 - 110. 被引量:1
  • 8WANG Hong-Bing, PENG Zhen-Ming, LIU Jie, et al. Fea- ture points detection and tracking based on SIFT combining with KLT method[ J]. Proc. SPIE. 2009(7506) :75062N1-10. 被引量:1
  • 9R E Kalman, A new approach to linear filtering and predic- tion problem[ J]. Trans on ASME. Journal of Basic Engi- neering, 1960,82 ( 1 ) : 35 - 45. 被引量:1
  • 10Kalman R E, Bucy R S. New methods and results in linear filtering and prediction theory[J]. Trans on ASME, Jour- nal of Basic Engineering, 1961,83 : 95 - 108. 被引量:1

共引文献75

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部