期刊文献+

一种振动信号降噪的堆叠降噪自编码器方法 被引量:2

Denoising Method of Stacked Denoising Auto-encoder for Vibration Signal
下载PDF
导出
摘要 为了解决振动信号降噪问题,提出一种基于堆叠降噪自编码器的方法。结合PReLU激活函数和批标准化对传统堆叠降噪自编码器进行改进,增强了模型的特征提取和信号重构能力。堆叠降噪自编码器方法使用编码器提取含噪振动信号中的特征,使用解码器进行信号重构,从而实现振动信号降噪。在正弦信号、调幅信号和轴承故障仿真信号下进行降噪实验,取得了优于传统降噪方法的降噪效果。利用实测的轴承振动信号进行实验,在较强噪声情况下仍然可以对添加噪声的轴承振动信号进行有效降噪。实验结果表明,提出的堆叠降噪自编码器方法可以应用于振动信号降噪。 To solve the problem of vibration signal denoising,a stacked denoising auto-encoder method is proposed.Combined with PRe LU activation function and Batchnormalization,the traditional stacked denoising auto-encoder is improved to enhance the capability of feature extraction and signal reconstruction.The stacked denoising auto-encoder method uses the encoder to extract the features of the vibration signal with noise and the decoder to reconstruct the signal,so as to realize the denoising of the vibration signal.Denoising experiments are carried out under the conditions of sinusoidal signal,amplitude modulation signal and simulated bearing fault signal.Tested results are better than those of traditional noise reduction methods.Finally,measured bearing vibration signals are used in the experiment.Under the condition of strong noise,bearing vibration signals added with noise can be effectively reduced.Experimental results show that the proposed stacked denoising auto-encoder method can be applied to accomplish vibration signal denoising.
作者 赵志宏 李乐豪 杨绍普 赵敬娇 ZHAO Zhihong;LI Lehao;YANG Shaopu;ZHAO Jingjiao(School of Computation and Informatics,Shijiazhuang Railway Institute Shijiazhuang,050043,China;State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety,Shijiazhuang Railway Institute Shijiazhuang,050043,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2022年第2期315-321,409,共8页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(11972236,11790282)。
关键词 自编码器 降噪 深度神经网络 振动信号 auto-encoder denoising deep neural network vibration signal
  • 相关文献

参考文献8

二级参考文献55

共引文献193

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部