期刊文献+

基于能量估计的小波阈值与经验模态分解相结合的滤波方法研究 被引量:2

Empirical Mode of Combination of the Wavelet Threshold Filtering and Empirical Mode Decomposition(EMD) Based on Energy Estimate
原文传递
导出
摘要 本文针对基于经验模态分解(EMD)的时空滤波器存在的固有模态函数分量中频率混叠交叉,导致有用信号与噪声一起被滤除的问题,结合小波在时间、尺度两域表征信号局部特征的特性,提出了一种基于能量估计实现EMD分解层数确定,小波变换阈值处理与EMD相结合的时空滤波方法。该方法既利用小波变换多分辨率的特性,又结合EMD的自适应分解与希尔伯特(Hilbert)谱分析中瞬时频率与能量意义的关系,从而解决了有用信号在滤波时被削弱的问题。以MIT/BIH标准心电数据库数据为对象的实验结果表明,该方法对于生理信号这一类强噪声下的微弱信号是一种有效的数据处理方法。 According to the frequency overlapping of intrinsic mode function (IMF) based on the temporal and spatial filtering of empirical mode decomposition (EMD), which will lead to the question of useful signals and noises filtered together, we proposed a method that numbers of IMF is determined by energy estimate, temporal and spatial filtering combing wavelet threshold and EMD integrating wavelet local signal characteristics of time and scale domain. This method not only used multi-resolution wavelet transform features, but also combined the EMD and Hilbert decomposition of the adaptive spectral analysis of instantaneous frequency and significance of the relationship between energy, so as to solve the problem of useful signal being weakened. With MIT/BIH ECG database standard data subjects, experimental results showed it was an effective method of data processing for handling this type of physiological signals under strong noise.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第6期1098-1102,共5页 Journal of Biomedical Engineering
关键词 滤波 小波变换 经验模态分解 希尔伯特变换 Filter Wavelet transform Empirical mode decomposition (EMD) Hilbert decomposition
  • 相关文献

参考文献9

  • 1AVERBUCH A, COIFMAN R R, DONOHO D L. Fast and accurate Polar Fourier transform[J]. Applied and Computation- al Harmonic Analysis, 2006, 21( 2):145-167. 被引量:1
  • 2HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998,454:903-995. 被引量:1
  • 3MANUEL B V, WENG BW, KENNETH E. ECG signal denoising and baselinewander correction based on the empirical mode decomposition[J]. Computers in Biology and Medicine, 2008,38:1-13. 被引量:1
  • 4CHENG J S, YU D J, YANG Y. Application of support vector regression machines to the processing of end effects of Hil- bert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3):1197-1211. 被引量:1
  • 5张宗平,刘贵忠,董恩清.基于二进小波变换的信号去噪[J].电子与信息学报,2001,23(11):1083-1090. 被引量:16
  • 6何焰兰,苏勇,高永楣.一种自适应小波去噪算法[J].电子学报,2000,28(10):138-140. 被引量:12
  • 7赵志宏,杨绍普,申永军.一种改进的EMD降噪方法[J].振动与冲击,2009,28(12):35-37. 被引量:40
  • 8TIKKANEN P E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal[J]. Biological Cybernetics, 1999,80(4) :259-267. 被引量:1
  • 9文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:154

二级参考文献26

  • 1彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 2Donoho D L. Adapting to unknown smoothness via wavelet- shrinkage[J]. J. Amer. Statist. Assoc., 1995, 90: 1200- 1224. 被引量:1
  • 3Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hibert Spectrum for nonlinear and non-stationary time series analysis [ C ]. Proc. R. Soc. Lond. A, 1998,454:903 - 995. 被引量:1
  • 4Boudraa A O, Cexus J C, Saidi Z. EMD-Based Signal Noise Reduction [ J ]. International Journal of Signal Processing, 2004, 1(1): 33-37. 被引量:1
  • 5Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the hibert spectrum [J]. Annu. Rev. Fluid Mech. , 1999,31:417 - 457. 被引量:1
  • 6Patrick Flandrin, Gabriel Rilling, Paulo Goncalves. Empirical Mode Decomposition as a Filter Bank [ J ]. IEEE Signal Processing Letters, 2004, 11 (2) : 112 - 114. 被引量:1
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J], Biometrika, 1994. 81(3):425-455. 被引量:1
  • 8Donoho D L. De-noising by soft-thresholding [ J ]. IEEE Trans. Inform. Theory, 1995, 41(3) : 613 -627. 被引量:1
  • 9Borg G G, Harris J H. Application of Plasma Columns to Radiofrequency Antennas [ J]. Applied Physics Letters, 1999, 74 (22) : 3272 - 3274. 被引量:1
  • 10[1]D.L. Donoho, I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 1994,81 (2), 425-455. 被引量:1

共引文献218

同被引文献30

  • 1蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:44
  • 2PICARD R W. Affective computing [M]. London: MIT Press, 1997. 被引量:1
  • 3KIM J, ANDRE E. Multi-channel biosignal analysis for auto- matic emotion recognition[C]//Proceedings of the First International Conference on Biomedical Electronics and Devices. Funchal, Madeira, Portugal: 2008: 124-131. 被引量:1
  • 4PICARD R W, HEALEY J. Affective wearable [C]//Pro- ceedings of the First International Symposium on Wearable Computers. Cambridge, USA: 1997: 90. 被引量:1
  • 5JIANG H P,YANG G S,GUI X K,et al. Emotion recognition system design using multi-physiological signals [C]//2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. Kyoto: 2012 : 499-503. 被引量:1
  • 6VILLON O, LISETTI C. Toward recognizing individual' s subjective emotion from physiological signals in pactical application [C]//20th IEEE International Symposium on Comput- er-Based Medical Systems. Mafibor, 2007: 357-362. 被引量:1
  • 7KIM J, ANDRE E. Emotion recognition based on physiological changes in music listening [J]. IEEE Trans Pattern Anal Mach Intell, 2008, 30(12): 2067-2083. 被引量:1
  • 8KIM K H, BANG S W, KIM S R. Emotion recognition system using short-term monitoring of physiological signals [J]. Med Biol Eng Comput, 2004, 42(3): 419-427. 被引量:1
  • 9GUO X H. Research on emotion recognition based on physiological signal and AuBT [C]//2011 International Conference on Consumer Electronics, Communications and Networks. Xianning, 2011: 614-617. 被引量:1
  • 10HEALEY J A. Wearable and automotive systems for affect recognition from physiology [D]. Boston: Massachusetts Institute of Technology, 2000. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部