期刊文献+

一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法 被引量:3

An improved Particle Swarm Optimization(PSO)Force Unloading Algorithm for Multi-task and Multi-resource Moving Edge Computing Environment
下载PDF
导出
摘要 为了研究移动设备在多资源复杂环境下的能量消耗问题,提出一种针对移动边缘设备计算卸载的改进粒子群算法。首先基于多环境的移动设备能耗提出一种移动设备能量消耗的计算模型;其次针对计算资源分配问题设计一种可以用于衡量分配方案优劣的适应度算法;最后提出一种改进的粒子群算法,用于求解进一步降低移动边缘设备能耗分配方案的最优解。通过使用模拟仿真软件对多种卸载策略下移动设备能耗、系统响应时间等关键指标对比表明,本文算法在满足用户响应时间的前提下,在求解降低移动设备能耗调度分配方案最优解的过程中具有更优的表现。 In order to study the energy consumption of mobile devices in multi-resource complex environment,an improved particle swarm optimization(PSO)algorithm for unloading calculation of mobile edge devices is proposed.Firstly,a computing model is proposed based on the multi-environment energy consumption of mobile devices.Secondly,a fitness algorithm is designed to measure the advantages and disadvantages of resource allocation schemes for computing resource problems.Finally,an improved particle swarm optimization(PSO)algorithm for energy allocation is presented for solving the optimal solution to further reduce the energy consumption scheduling and allocation scheme of mobile devices.The comparison of energy consumption system response time and other indicators of mobile devices under various unloading strategies by simulation software shows that the proposed algorithm has a better performance in solving the optimal solution to reduce the energy consumption scheduling and allocation scheme of mobile devices on the premise of satisfying the user response time.
作者 张彦虎 鄢丽娟 马志愤 张彦军 ZHANG Yan-hu;YAN Li-juan;MA Zhi-fen;ZHANG Yan-jun(School of Computer and Information Engineering, Guangdong Songshan Politechnic, Shaoguan 512126, China;Jose Riazal University, Mandaluyong 1550, Philippines;Yimu Technology (Beijing) Co., Ltd., Beijing 100000, China;Gansu Wuhuan Highway Engineering., Ltd., Lanzhou 730000, China)
出处 《计算机与现代化》 2022年第5期54-60,67,共8页 Computer and Modernization
基金 广东省普通高校特色创新项目资助(2019GKTSCX041) 广东省高职教育精品课程建设项目资助(粤教职函[2018]194.50) 广东省韶关市科技计划(社会发展与农村科技专项)资金项目资助(韶科〔2018〕133号-2018SN041)。
关键词 移动边缘计算 移动边缘设备 计算卸载 粒子群算法 适应度 能耗模型 能源效率 mobile edge computing mobile edge devices computation offloading particle swarm optimization fitness energy consumption model energy efficient
  • 相关文献

参考文献19

二级参考文献78

  • 1肖志娇,常会友,衣杨.启发式规则与GA结合的优化方法求解工作流动态调度优化问题[J].计算机科学,2007,34(2):157-160. 被引量:11
  • 2王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 3Kwok Y K,Ahmad I.Dynamic critical path scheduling:an effective technique for allocating task graphs to multiprocessors[C]//IEEE Transactions on Parallel and Distributed Systems,1996,7 (5):506-521. 被引量:1
  • 4Kwok Y K,Ahmad I.Benchmarking and comparison of the task graph scheduling algorithms[J].Journal of Parallel and Distributed Computing,1999,59 (3):381-422. 被引量:1
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc IEEE Int Conf on Neural Networks.Piscataway:IEEE Service Center,1995:1942-1948. 被引量:1
  • 6Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya Japan,1995:39-43. 被引量:1
  • 7Zhang Hong,Li Xiaodong,Li Heng,et al.Particle swarm optimization-based schemes for resource-constrained project scheduling[J].Automation in Construction,2005,14:393-404. 被引量:1
  • 8Davidovic T,Crainic T G.New benchmarks for static task scheduling on homogeneous multiprocessor systems with communication delays.Publication CRT-2003-04,Centre de Recherche sur les Transports,Université de Montréal,2003. 被引量:1
  • 9Xu Wenbo,Sun Jun.Efficient scheduling of tasks graphs to multiprocessors using a simulated annealing algorithm[C]//DCABES 2004 Proceedings,2004,1:435-439. 被引量:1
  • 10Liu Min,Wu Cheng.A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines[J].Artificial Intelligence Engineering,1999,13:399-400. 被引量:1

共引文献348

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部